hal.structure.identifier | James Cook University [JCU] | |
dc.contributor.author | CERNUSAK, Lucas A. | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | BARBETA, Adria | |
hal.structure.identifier | Trier Universität = Trier University = Université de Trèves [Uni Trier] | |
dc.contributor.author | BÖGELEIN, Rebekka | |
dc.contributor.author | BUSH, Rosemary T. | |
hal.structure.identifier | Universitat de Lleida | |
dc.contributor.author | FERRIO, Juan Pedro | |
hal.structure.identifier | University of Lethbridge | |
dc.contributor.author | FLANAGAN, Lawrence B. | |
hal.structure.identifier | Swiss Federal Institute for Forest, Snow and Landscape Research WSL | |
dc.contributor.author | GESSLER, Arthur | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | MARTÍN-GOMEZ, Paula | |
hal.structure.identifier | Technische Universitat Muenchen | |
dc.contributor.author | HIRL, Regina | |
hal.structure.identifier | Université de Bâle = University of Basel = Basel Universität [Unibas] | |
dc.contributor.author | KAHMEN, Ansgar | |
hal.structure.identifier | University of Sydney | |
dc.contributor.author | KEITEL, Claudia | |
hal.structure.identifier | San Diego State University [SDSU] | |
dc.contributor.author | LAI, Chun-Ta | |
hal.structure.identifier | James Cook University [JCU] | |
dc.contributor.author | MUNKSGAARD, Niels | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | OGÉE, Jérôme | |
hal.structure.identifier | Université de Bâle = University of Basel = Basel Universität [Unibas] | |
dc.contributor.author | NELSON, Daniel B. | |
hal.structure.identifier | Southern Oregon University [SOU] | |
dc.contributor.author | RODEN, John S. | |
hal.structure.identifier | Technische Universitat Muenchen | |
dc.contributor.author | SCHNYDER, Hans | |
hal.structure.identifier | Utah State University [USU] | |
dc.contributor.author | VOELKER, Steven | |
hal.structure.identifier | Purdue University [West Lafayette] | |
dc.contributor.author | WANG, Lixin | |
hal.structure.identifier | Australian National University [ANU] | |
dc.contributor.author | STUART-WILLIAMS, Hilary | |
hal.structure.identifier | Interactions Sol Plante Atmosphère [UMR ISPA] | |
dc.contributor.author | WINGATE, Lisa | |
hal.structure.identifier | Institute of Tibetan Plateau Research | |
dc.contributor.author | YU, Wusheng | |
hal.structure.identifier | North-West University [Potchefstroom] [NWU] | |
dc.contributor.author | ZHAO, Liangju | |
hal.structure.identifier | SILVA [SILVA] | |
dc.contributor.author | CUNTZ, Matthias | |
dc.date.accessioned | 2024-04-08T11:56:28Z | |
dc.date.available | 2024-04-08T11:56:28Z | |
dc.date.issued | 2019 | |
dc.date.conference | 2019-12-08 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/195757 | |
dc.description.abstractEn | Several important isotopic biomarkers derive at least part of their signal from leaf water stable isotope composition (e.g., leaf wax δ2H, cellulose δ2H and δ18O, lignin δ18O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls leaf water stable isotope enrichment. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water 2H enrichment could differ from that for 18O enrichment. Our dataset comprises 620 observations from 39 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal into organic material take place. The Craig-Gordon equation was generally a good predictor for daytime leaf water stable isotope composition for both δ2H (R2=0.93, p<0.001) and δ18O (R2=0.70, p<0.001). Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of xylem water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of 2H and 18O are predominantly driven by different environmental variables: leaf water δ2H correlated most strongly with the δ2H of atmospheric vapour (R2=0.79, p<0.001), whereas leaf water δ18O correlated most strongly with air relative humidity (R2=0.45, p<0.001). We conclude that these two isotopic measures are not simply mirror images in the environmental information that they carry. This has with crucial implications for interpretation of isotopic proxies that derive at least part of their composition from leaf water stable isotopes. | |
dc.language.iso | en | |
dc.title.en | The dominant environmental driver of leaf water stable isotope enrichment differs for 2H compared to 18O | |
dc.type | Autre communication scientifique (congrès sans actes - poster - séminaire...) | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.hal.laboratories | Interactions Soil Plant Atmosphere (ISPA) - UMR 1391 | * |
bordeaux.institution | Bordeaux Sciences Agro | |
bordeaux.institution | INRAE | |
bordeaux.conference.title | American Geophysical Union symposium (AGU Fall Meeting) | |
bordeaux.country | US | |
bordeaux.conference.city | San Francisco | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02789758 | |
hal.version | 1 | |
hal.invited | oui | |
hal.conference.end | 2019-12-13 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02789758v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2019&rft.au=CERNUSAK,%20Lucas%20A.&BARBETA,%20Adria&B%C3%96GELEIN,%20Rebekka&BUSH,%20Rosemary%20T.&FERRIO,%20Juan%20Pedro&rft.genre=conference | |