Show simple item record

hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorSCHNEIDER, André
hal.structure.identifierLaboratoire Sols et Environnement [LSE]
dc.contributor.authorNGUYEN, Van Xuan
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorVIALA, Yoann
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorVIOLO, Valentin
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorCORNU, Jean-Yves
hal.structure.identifierLaboratoire Sols et Environnement [LSE]
dc.contributor.authorSTERCKEMAN, Thibault
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorNGUYEN, Christophe
dc.date.accessioned2024-04-08T11:49:57Z
dc.date.available2024-04-08T11:49:57Z
dc.date.issued2019
dc.identifier.issn0016-7061
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/195363
dc.description.abstractEnPartitioning of metals between the soil solid phase and the solution is an important topic in environmental sciences because it determines the metal transfers to aquifers and biological organisms. Complexation of metals with ligands in the soil solution strongly influences the sorption/desorption (SD) of metals, in particular that of the free ion. Because the latter is the metal species principally absorbed by biological organisms, the bioavail-ability of a metal is better reflected by the soil-solution distribution coefficients of the free ion as compared to that of the total metal (sum of the free ion and of the complexes). The present work proposes a modeling approach to determine the distribution coefficients for the free ion and for the metal complexes from SD experiments. The method does not require estimating the mobile pool of the metal sorbed onto the solid phase by any chemical extraction as the modeling relies on the variation of the sorbed metal, which is experimentally exactly estimated from the variation of the amount of metal in solution during the SD experiment. Tested for cadmium (Cd), the model reproduced very well the SD curves observed for the total metal. For any solution:soil ratio including that at field soil moisture, the model gives estimates of important variables including the distribution coefficient for the free ion, the complex, the ligands and the total metal, the concentration of these species in the soil solution and onto the solid phase. The model can be applied as long as the range of the concentration investigated allows to assume a linear sorption of the metal.
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subjectcomplexation
dc.subjectdistribution coefficient
dc.subject.enmodeling
dc.subject.ensorption-desorption
dc.subject.entrace metals
dc.title.enA method to determine the soil-solution distribution coefficients and the concentrations for the free ion and the complexes of trace metals: Application to cadmium
dc.typeArticle de revue
dc.identifier.doi10.1016/j.geoderma.2019.02.001
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences de l'environnement
bordeaux.journalGeoderma
bordeaux.page91-102
bordeaux.volume346
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-02627753
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02627753v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geoderma&rft.date=2019&rft.volume=346&rft.spage=91-102&rft.epage=91-102&rft.eissn=0016-7061&rft.issn=0016-7061&rft.au=SCHNEIDER,%20Andr%C3%A9&NGUYEN,%20Van%20Xuan&VIALA,%20Yoann&VIOLO,%20Valentin&CORNU,%20Jean-Yves&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record