Show simple item record

hal.structure.identifierChongqing University [Chongqing]
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
dc.contributor.authorHE, Xianjin
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorAUGUSTO, Laurent
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
dc.contributor.authorGOLL, Daniel
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorRINGEVAL, Bruno
hal.structure.identifierCSIRO Marine and Atmospheric Research [Aspendale]
dc.contributor.authorWANG, Ying-Ping
hal.structure.identifierAgroscope
hal.structure.identifierWageningen University and Research [Wageningen] [WUR]
dc.contributor.authorHELFENSTEIN, Julian
hal.structure.identifierChinese Academy of Sciences [Beijing] [CAS]
dc.contributor.authorHUANG, Yuanyuan
hal.structure.identifierChinese Academy of Sciences [Beijing] [CAS]
dc.contributor.authorHOU, Enqing
dc.date.accessioned2024-04-08T11:35:22Z
dc.date.available2024-04-08T11:35:22Z
dc.date.issued2023-10-11
dc.identifier.issn1726-4170
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194992
dc.description.abstractEnMost phosphorus (P) in soils is unavailable for direct biological uptake, as it is locked within primary or secondary mineral particles, adsorbed to mineral surfaces, or immobilized inside of organic material. Deciphering the composition of different P forms in soil is critical for understanding P bioavailability and its underlying dynamics. However, widely used global estimates of different soil P forms are based on a dataset containing few measurements in which many regions or soil types are unrepresented. This poses a major source of uncertainty in assessments that rely on these estimates to quantify soil P constraints on biological activity controlling global food production and terrestrial carbon balance. To address this issue, we consolidated a database of six major soil P “forms” containing 1857 entries from globally distributed (semi-)natural soils and 11 related environmental variables. These six different forms of P (labile inorganic P (Pi), labile organic P (Po), moderately labile Pi, moderately labile Po, primary mineral P, and occluded P) were measured using a sequential P fractionation method. As they do not represent precise forms of specific discrete P compounds in the soil but rather resemble operational pools, we will now refer to them as P pools. In order to quantify the relative importance of 11 soil-forming variables in predicting soil P pool concentrations and then make further predictions at the global scale, we trained random forest regression models for each of the P pools and captured observed variation with R2 higher than 60 %. We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. When expressed in relative values (proportion of total P), the model showed that soil pH is generally the most important predictor for proportions of all soil P pools, alongside the prominent influences of soil organic carbon, total P concentration, soil depth, and biome. These results suggest that, while concentration values of P pools logically strongly depend on soil total P concentration, the relative values of the different pools are modulated by other soil properties and the environmental context. Using the trained random forest models, we predicted soil P pools' distributions in natural systems at a resolution of 0.5∘×0.5∘. Our global maps of different P pools in soils as well as the pools' underlying drivers can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.
dc.language.isoen
dc.publisherEuropean Geosciences Union
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enGlobal patterns and drivers of phosphorus fractions in natural soils
dc.typeArticle de revue
dc.identifier.doi10.5194/bg-20-4147-2023
dc.subject.halSciences de l'environnement
bordeaux.journalBiogeosciences
bordeaux.page4147 - 4163
bordeaux.volume20
bordeaux.hal.laboratoriesInteractions Soil Plant Atmosphere (ISPA) - UMR 1391*
bordeaux.issue19
bordeaux.institutionBordeaux Sciences Agro
bordeaux.institutionINRAE
bordeaux.peerReviewedoui
hal.identifierhal-04513322
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04513322v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biogeosciences&rft.date=2023-10-11&rft.volume=20&rft.issue=19&rft.spage=4147%20-%204163&rft.epage=4147%20-%204163&rft.eissn=1726-4170&rft.issn=1726-4170&rft.au=HE,%20Xianjin&AUGUSTO,%20Laurent&GOLL,%20Daniel&RINGEVAL,%20Bruno&WANG,%20Ying-Ping&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record