Dual operator algebras with normal virtual h-diagonal.
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ROYDOR, Jean | |
dc.date.accessioned | 2024-04-04T03:22:11Z | |
dc.date.available | 2024-04-04T03:22:11Z | |
dc.date.created | 2011 | |
dc.date.issued | 2012 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194731 | |
dc.description.abstractEn | We study the class of dual operator algebras admitting a normal virtual h-diagonal (i.e. a diagonal in the normal Haagerup tensor product), this property can be seen as a dual operator space version of amenability. After giving several characterizations of these algebras, we show this class is stable under algebraic perturbations and cb-isomorphisms with small bound. We also prove some perturbation results for the Kadison-Kastler metric. | |
dc.language.iso | en | |
dc.title.en | Dual operator algebras with normal virtual h-diagonal. | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
bordeaux.journal | Integral Equations Operator Theory | |
bordeaux.page | Integral Equations Operator Theory 73 (2012), no. 3, 365-382. | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01016331 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01016331v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integral%20Equations%20Operator%20Theory&rft.date=2012&rft.spage=Integral%20Equations%20Operator%20Theory%2073%20(2012),%20no.%203,%20365-382.&rft.epage=Integral%20Equations%20Operator%20Theory%2073%20(2012),%20no.%203,%20365-382.&rft.au=ROYDOR,%20Jean&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |