J.J. Sylvester's two convex sets theorem and G.-L. Lesage's theory of gravity
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CHABANOL, Marie-Line | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | RUCH, Jean-Jacques | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MENDES-FRANCE, Michel | |
dc.date.accessioned | 2024-04-04T03:22:04Z | |
dc.date.available | 2024-04-04T03:22:04Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 2309-5377 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194719 | |
dc.description.abstractEn | Given two convex sets $K_1$ and $K_2$ in the plane, J.J. Sylvester computes the measure $m(K_1,K_2)$ of the family of straight lines which meet both $K_1$ and $K_2$. As their distance $d=d(K_1,K_2)$ increases to infinity $\displaystyle{m(K_1,K_2)=h(K_1)h(K_2)/d+O(1/d^2)}$ for some $h(K_1)\ge 0$ and $h(K_2)\ge 0$, suggesting Newton's law of attraction in the plane. We discuss the analogy in the spirit of G. -L. Lesage. | |
dc.language.iso | en | |
dc.publisher | Mathematical Institute of the Slovak Academy of Sciences | |
dc.subject.en | Geometric probability | |
dc.subject.en | Gravitation | |
dc.title.en | J.J. Sylvester's two convex sets theorem and G.-L. Lesage's theory of gravity | |
dc.type | Article de revue | |
dc.subject.hal | Physique [physics]/Physique mathématique [math-ph] | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
dc.subject.hal | Mathématiques [math]/Probabilités [math.PR] | |
dc.subject.hal | Mathématiques [math]/Géométrie métrique [math.MG] | |
bordeaux.journal | Uniform Distribution Theory | |
bordeaux.page | 135 | |
bordeaux.volume | 7 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01018133 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01018133v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Uniform%20Distribution%20Theory&rft.date=2012&rft.volume=7&rft.issue=1&rft.spage=135&rft.epage=135&rft.eissn=2309-5377&rft.issn=2309-5377&rft.au=CHABANOL,%20Marie-Line&RUCH,%20Jean-Jacques&MENDES-FRANCE,%20Michel&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |