On $L^{r}$ hypoellipticity of solutions with compact support of the Cauchy-Riemann equation
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AMAR, Eric | |
hal.structure.identifier | Scuola Superiore di Pisa | |
dc.contributor.author | MONGODI, Samuel | |
dc.date.accessioned | 2024-04-04T03:21:56Z | |
dc.date.available | 2024-04-04T03:21:56Z | |
dc.date.created | 2013-01 | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0373-3114 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194705 | |
dc.description.abstractEn | In one complex variable, the existence of a compactly supported solution to the Cauchy-Riemann equation is related to the vanishing of certain integrals of the data; trying to generalize this approach, we find an explicit construction, via convolution, for a compactly supported solution in TeX , which allows us to estimate the TeX norm of the solution. We also investigate the possible generalizations of this method to domains of the form TeX , where TeX is a polydisc and TeX is the zero locus of some holomorphic function. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.title.en | On $L^{r}$ hypoellipticity of solutions with compact support of the Cauchy-Riemann equation | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s10231-012-0312-8 | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
bordeaux.journal | Annali di Matematica Pura ed Applicata | |
bordeaux.page | 999-1018 | |
bordeaux.volume | 193 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01022852 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01022852v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annali%20di%20Matematica%20Pura%20ed%20Applicata&rft.date=2014&rft.volume=193&rft.issue=4&rft.spage=999-1018&rft.epage=999-1018&rft.eissn=0373-3114&rft.issn=0373-3114&rft.au=AMAR,%20Eric&MONGODI,%20Samuel&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |