Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAMAR, Eric
hal.structure.identifierScuola Superiore di Pisa
dc.contributor.authorMONGODI, Samuel
dc.date.accessioned2024-04-04T03:21:56Z
dc.date.available2024-04-04T03:21:56Z
dc.date.created2013-01
dc.date.issued2014
dc.identifier.issn0373-3114
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194705
dc.description.abstractEnIn one complex variable, the existence of a compactly supported solution to the Cauchy-Riemann equation is related to the vanishing of certain integrals of the data; trying to generalize this approach, we find an explicit construction, via convolution, for a compactly supported solution in TeX , which allows us to estimate the TeX norm of the solution. We also investigate the possible generalizations of this method to domains of the form TeX , where TeX is a polydisc and TeX is the zero locus of some holomorphic function.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enOn $L^{r}$ hypoellipticity of solutions with compact support of the Cauchy-Riemann equation
dc.typeArticle de revue
dc.identifier.doi10.1007/s10231-012-0312-8
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
bordeaux.journalAnnali di Matematica Pura ed Applicata
bordeaux.page999-1018
bordeaux.volume193
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01022852
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01022852v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annali%20di%20Matematica%20Pura%20ed%20Applicata&rft.date=2014&rft.volume=193&rft.issue=4&rft.spage=999-1018&rft.epage=999-1018&rft.eissn=0373-3114&rft.issn=0373-3114&rft.au=AMAR,%20Eric&MONGODI,%20Samuel&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record