Afficher la notice abrégée

hal.structure.identifierDipartimento di Matematica Pura e Applicata [Padova]
dc.contributor.authorBERTAPELLE, Alessandra
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTONG, Jilong
dc.date.accessioned2024-04-04T03:21:53Z
dc.date.available2024-04-04T03:21:53Z
dc.date.created2013-11-21
dc.date.issued2014
dc.identifier.issn0025-5874
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194700
dc.description.abstractEnLet $K$ be a local field with algebraically closed residue field and $X_K$ a torsor under an elliptic curve $J_K$ over $K$. Let $X$ be a proper minimal regular model of $X_K$ over the ring of integers of $K$ and $J$ the identity component of the Néron model of $J_K$. We study the canonical morphism $q\colon \mathrm{Pic}^{0}_{X/S}\to J$ which extends the biduality isomorphism on generic fibres. We show that $q$ is pro-algebraic in nature with a construction that recalls Serre's work on local class field theory. Furthermore we interpret our results in relation to Shafarevich's duality theory for torsors under abelian varieties.
dc.language.isoen
dc.publisherSpringer
dc.title.enOn torsors under elliptic curves and Serre's pro-algebraic structures
dc.typeArticle de revue
dc.identifier.doi10.1007/s00209-013-1247-5
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1204.2805
bordeaux.journalMathematische Zeitschrift
bordeaux.page91-147
bordeaux.volume277
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1-2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01023394
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01023394v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematische%20Zeitschrift&rft.date=2014&rft.volume=277&rft.issue=1-2&rft.spage=91-147&rft.epage=91-147&rft.eissn=0025-5874&rft.issn=0025-5874&rft.au=BERTAPELLE,%20Alessandra&TONG,%20Jilong&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée