Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLIU, Qing
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTONG, Jilong
dc.date.accessioned2024-04-04T03:21:53Z
dc.date.available2024-04-04T03:21:53Z
dc.date.created2013-12-17
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194699
dc.description.abstractEnLet S be a Dedekind scheme with field of functions K. We show that if X_K is a smooth connected proper curve of positive genus over K, then it admits a Néron model over S, i.e., a smooth separated model of finite type satisfying the usual Néron mapping property. It is given by the smooth locus of the minimal proper regular model of X_K over S, as in the case of elliptic curves. When S is excellent, a similar result holds for connected smooth affine curves different from the affine line, with locally finite type Néron models.
dc.language.isoen
dc.title.enNéron models of algebraic curves
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1312.4822
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01023396
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01023396v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=LIU,%20Qing&TONG,%20Jilong&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record