Show simple item record

hal.structure.identifierInstitute of Computational Science
dc.contributor.authorDICKOPF, Thomas
hal.structure.identifierInstitute of Computational Science
dc.contributor.authorKRAUSE, Dorian
hal.structure.identifierInstitute of Computational Science
dc.contributor.authorKRAUSE, Rolf
hal.structure.identifierInstitute of Computational Science
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierIHU-LIRYC
dc.contributor.authorPOTSE, Mark
dc.date.accessioned2024-04-04T03:21:37Z
dc.date.available2024-04-04T03:21:37Z
dc.date.issued2014-04-01
dc.identifier.issn1064-8275
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194673
dc.description.abstractEnNumerical simulation of the nonlinear reaction-diffusion equations in computational electrocardiology requires locally high spatial resolution to capture the multiscale effects related to the electrical activation of the heart accurately, namely the strongly varying transmembrane potential. Here, we propose a novel lightweight adaptive algorithm which aims at ombining the plainness of structured meshes with the resolving capabilities of unstructered adaptive meshes. Our "patchwise adaptive" approach is based on locally structured mesh hierarchies which are glued along their interfaces by a nonconforming mortar element discretization. To further increase the overall efficiency, we keep the spatial meshes constant over suitable time windows in which error indicators are accumulated. This approach facilitates strongly varying mesh sizes in neighboring patches as well as in consecutive time steps. For the transfer of the dynamic variables between different spatial approximation spaces we compare the L2-projection and a local approximation. Finally, since an implicit-explicit time discretization is employed for stability reasons, we derive a spatial preconditioner which is tailored to the special structure of the patchwise adaptive meshes. We analyze the (parallel) performance and scalability of the resulting method by several examples from computational electrocardiology of different sizes. Additionally, we compare our method to a standard adaptive refinement strategy using unstructured meshes. As it turns out, our novel adaptive scheme provides a very good balance between reduction in degrees of freedom and overall (parallel) efficiency.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.title.enDesign and analysis of a lightweight parallel adaptive scheme for the solution of the monodomain equation
dc.typeArticle de revue
dc.identifier.doi10.1137/130912505
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
bordeaux.journalSIAM Journal on Scientific Computing
bordeaux.pageC163-C189
bordeaux.volume36
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01024658
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01024658v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2014-04-01&rft.volume=36&rft.issue=2&rft.spage=C163-C189&rft.epage=C163-C189&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=DICKOPF,%20Thomas&KRAUSE,%20Dorian&KRAUSE,%20Rolf&POTSE,%20Mark&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record