Galois module structure and Jacobians of Fermat curves
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CASSOU-NOGUÈS, Philippe | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GILLIBERT, Jean | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | JEHANNE, Arnaud | |
dc.date.accessioned | 2024-04-04T03:21:21Z | |
dc.date.available | 2024-04-04T03:21:21Z | |
dc.date.created | 2014-04-16 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194652 | |
dc.description.abstractEn | The class-invariant homomorphism allows one to measure the Galois module structure of extensions obtained by dividing points on abelian varieties. In this paper, we consider the case when the abelian variety is the Jacobian of a Fermat curve. We give examples of torsion points whose associated Galois structure is trivial, as well as points of infinite order whose associated Galois structure is non-trivial. | |
dc.language.iso | en | |
dc.title.en | Galois module structure and Jacobians of Fermat curves | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1404.4248 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01027572 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01027572v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CASSOU-NOGU%C3%88S,%20Philippe&GILLIBERT,%20Jean&JEHANNE,%20Arnaud&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |