Heights and regulators
hal.structure.identifier | Université Sciences et Technologies - Bordeaux 1 [UB] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAZUKI, Fabien | |
dc.date.accessioned | 2024-04-04T03:21:19Z | |
dc.date.available | 2024-04-04T03:21:19Z | |
dc.date.created | 2014-06-12 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194648 | |
dc.description.abstractEn | We compare general inequalities between invariants of number fields and invariants of abelian varieties over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the abelian side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of abelian varieties with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of abelian varieties over a number field having a non Zariski dense Mordell-Weil group. | |
dc.language.iso | en | |
dc.title.en | Heights and regulators | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1406.0120 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01030750 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01030750v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PAZUKI,%20Fabien&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |