Afficher la notice abrégée

hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAZUKI, Fabien
dc.date.accessioned2024-04-04T03:21:19Z
dc.date.available2024-04-04T03:21:19Z
dc.date.created2014-06-12
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194648
dc.description.abstractEnWe compare general inequalities between invariants of number fields and invariants of abelian varieties over number fields. On the number field side, we remark that there is only a finite number of non-CM number fields with bounded regulator. On the abelian side, assuming the height conjecture of Lang and Silverman, we obtain a Northcott property for the regulator on the set of abelian varieties with dense rational points over a number field. This amounts to say that the arithmetic of CM fields is similar, with respect to the invariants considered here, to the arithmetic of abelian varieties over a number field having a non Zariski dense Mordell-Weil group.
dc.language.isoen
dc.title.enHeights and regulators
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1406.0120
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01030750
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01030750v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PAZUKI,%20Fabien&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée