Limiting absorption principle for the Magnetic Dirichlet Laplacian in a half-plane.
hal.structure.identifier | Équipe EDP et Physique Mathématique | |
dc.contributor.author | POPOFF, Nicolas | |
hal.structure.identifier | Centre de Physique Théorique - UMR 7332 [CPT] | |
hal.structure.identifier | CPT - E8 Dynamique quantique et analyse spectrale | |
dc.contributor.author | SOCCORSI, Eric | |
dc.date.accessioned | 2024-04-04T03:20:31Z | |
dc.date.available | 2024-04-04T03:20:31Z | |
dc.date.created | 2014 | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0360-5302 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194592 | |
dc.description.abstractEn | We consider the Dirichlet Laplacian in the half-plane with constant magnetic field. Due to the translational invariance this operator admits a fiber decomposition and a family of dis- persion curves, that are real analytic functions. Each of them is simple and monotically decreasing from positive infinity to a finite value, which is the corresponding Landau level. These finite limits are thresholds in the purely absolutely continuous spectrum of the magnetic Laplacian. We prove a limiting absorption principle for this operator both outside and at the thresholds. Finally, we establish analytic and decay properties for functions lying in the absorption spaces. We point out that the analysis carried out in this paper is rather general and can be adapted to a wide class of fibered magnetic Laplacians with thresholds in their spectrum that are finite limits of their band functions. | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.subject.en | limit absorption | |
dc.subject.en | constant magnetic field | |
dc.subject.en | thresholds | |
dc.subject.en | Two-dimensional Schrödinger operators | |
dc.subject.en | thresholds. | |
dc.title.en | Limiting absorption principle for the Magnetic Dirichlet Laplacian in a half-plane. | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/03605302.2016.1167081 | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 1409.6082 | |
bordeaux.journal | Communications in Partial Differential Equations | |
bordeaux.page | 879-893 | |
bordeaux.volume | 41 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 6 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01066569 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01066569v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Partial%20Differential%20Equations&rft.date=2016&rft.volume=41&rft.issue=6&rft.spage=879-893&rft.epage=879-893&rft.eissn=0360-5302&rft.issn=0360-5302&rft.au=POPOFF,%20Nicolas&SOCCORSI,%20Eric&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |