Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCHEN, Peng
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMAGNIEZ, Jocelyn
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorOUHABAZ, El Maati
dc.date.accessioned2024-04-04T03:20:16Z
dc.date.available2024-04-04T03:20:16Z
dc.date.issued2015
dc.identifier.issn0362-546X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194576
dc.description.abstractEnLet M be a complete non-compact Riemannian manifold satisfying the doubling volume property as well as a Gaussian upper bound for the corresponding heat kernel. We study the boundedness of the Riesz transform d∆ − 1 2 on both Hardy spaces H p and Lebesgue spaces L p under two different conditions on the negative part of the Ricci curvature R − . First we prove that if R − is α-subcritical for some α ∈ [0, 1), then the Riesz transform d * − → ∆ − 1 2 on differential 1-forms is bounded from the associated Hardy space H p − → ∆ (Λ 1 T * M) to L p (M) for all p ∈ [1, 2]. As a consequence, d∆ − 1 2 is bounded on L p for all p ∈ (1, p 0) where p 0 > 2 depends on α and the constant appearing in the doubling property. Second, we prove that if 1 0 |R − | 1 2 v(·, √ t) 1 p 1 p1 dt √ t + ∞ 1 |R − | 1 2 v(·, √ t) 1 p 2 p2 dt √ t < ∞, for some p 1 > 2 and p 2 > 3, then the Riesz transform d∆ − 1 2 is bounded on L p for all 1 < p < p 2 . In the particular case where v(x, r) ≥ Cr D for all r ≥ 1 and |R − | ∈ L D/2−η ∩ L D/2+η for some η > 0, then d∆ − 1 2 is bounded on L p for all 1 < p < D. Furthermore, we study the boundedness of the Riesz transform of Schrödinger operators A = ∆ + V on L p for p > 2 under conditions on R − and the potential V . We prove both positive and negative results on the boundedness of dA − 1 2 on L p .
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.publisherElsevier
dc.title.enThe Hodge–de Rham Laplacian and Lp-boundedness of Riesz transforms on non-compact manifolds
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalNonlinear Analysis: Theory, Methods and Applications
bordeaux.page78-98
bordeaux.volume125
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01079425
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01079425v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Nonlinear%20Analysis:%20Theory,%20Methods%20and%20Applications&amp;rft.date=2015&amp;rft.volume=125&amp;rft.spage=78-98&amp;rft.epage=78-98&amp;rft.eissn=0362-546X&amp;rft.issn=0362-546X&amp;rft.au=CHEN,%20Peng&amp;MAGNIEZ,%20Jocelyn&amp;OUHABAZ,%20El%20Maati&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record