Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorANDREYS, Simon
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorJAMING, Philippe
dc.date.accessioned2024-04-04T03:19:27Z
dc.date.available2024-04-04T03:19:27Z
dc.date.issued2016
dc.identifier.issn0133-3852
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194510
dc.description.abstractEnThe aim of this paper is to pursue the investigation of the phase retrieval problem for the fractional Fourier transform $\ff_\alpha$started by the second author.We here extend a method of A.E.J.M Janssen toshow that there is a countable set $\qq$ such that for every finite subset $\aa\subset \qq$, there exist twofunctions $f,g$ not multiple of one an other such that $|\ff_\alpha f|=|\ff_\alpha g|$ for every $\alpha\in \aa$.Equivalently, in quantum mechanics, this result reformulates as follows:if $Q_\alpha=Q\cos\alpha+P\sin\alpha$ ($Q,P$ be the position and momentum observables),then $\{Q_\alpha,\alpha\in\aa\}$ is not informationally complete with respect to pure states.This is done by constructing two functions $\ffi,\psi$ such that $\ff_\alpha\ffi$ and $\ff_\alpha\psi$ have disjoint support for each $\alpha\in \aa$. To do so, we establish a link between $\ff_\alpha[f]$, $\alpha\in \qq$ and the Zak transform $Z[f]$generalizing the well known marginal properties of $Z$.
dc.description.sponsorshipConséquences à long terme de l'exposition péripubertaire aux cannabinoides: étude comportementale et transcriptionnelle chez le rat et analyse moléculaire chez l'homme - ANR-06-NEUR-0044
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enZak transform
dc.subject.enWeyl-Heisenberg transform
dc.subject.enFractional Fourier Transform
dc.subject.enPauli problem
dc.subject.enPhase Retrieval
dc.title.enZak Transform and non-uniqueness in an extension of Pauli's phase retrieval problem
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.subject.halMathématiques [math]/Théorie de l'information et codage [math.IT]
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
dc.identifier.arxiv1501.03905
bordeaux.journalAnalysis Mathematica
bordeaux.page185-201
bordeaux.volume42
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01103583
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01103583v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Analysis%20Mathematica&rft.date=2016&rft.volume=42&rft.spage=185-201&rft.epage=185-201&rft.eissn=0133-3852&rft.issn=0133-3852&rft.au=ANDREYS,%20Simon&JAMING,%20Philippe&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record