Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorTODESCHINI, Adrien
hal.structure.identifierDepartment of Statistics [Oxford]
dc.contributor.authorCARON, Francois
hal.structure.identifierService Expérimentation et Développement [Bordeaux] [SED]
dc.contributor.authorFUENTES, Marc
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorLEGRAND, Pierrick
hal.structure.identifierUniversity of New South Wales [Sydney] [UNSW]
dc.contributor.authorDEL MORAL, Pierre
dc.date.accessioned2024-04-04T03:19:16Z
dc.date.available2024-04-04T03:19:16Z
dc.date.conference2014-08-19
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194491
dc.description.abstractEnThe main factor in the success of Markov Chain Monte Carlo Methods is that they can be implemented with little efforts in a large variety of settings. Many softwares have been developped such as BUGS and JAGS, that helped to popularize Bayesian methods. These softwares allow the user to define his statistical model in a so-called BUGS language, then runs MCMC algorithms as a black box.Although sequential Monte Carlo methods have become a very popular class of numerical methods over the last 20 years, there is no such “black box software” for this class of methods. The BiiPS software, which stands for Bayesian Inference with Interacting Particle Systems, aims at bridging this gap. From a graphical model defined in BUGS language, it automatically implements sequential Monte Carlo algorithms and provides summaries of the posterior distributions. In this poster, we will highlight some of the features of the BiiPS software and an illustration of its application to a stochastic volatility model.
dc.language.isoen
dc.subject.enStatistical software
dc.subject.enBayesian Graphical Models
dc.subject.enSequential Monte Carlo
dc.subject.enParticle Filtering
dc.subject.enBUGS
dc.title.enBiips software: inference in Bayesian graphical models with sequential Monte Carlo methods
dc.typeCommunication dans un congrès
dc.subject.halStatistiques [stat]/Calcul [stat.CO]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.title21st International Conference on Computational Statistics (COMPSTAT 2014)
bordeaux.countryCH
bordeaux.conference.cityGenève
bordeaux.peerReviewedoui
hal.identifierhal-01108399
hal.version1
hal.invitedoui
hal.proceedingsnon
hal.conference.organizerEuropean Regional Section of the IASC
hal.conference.end2014-08-22
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01108399v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=TODESCHINI,%20Adrien&CARON,%20Francois&FUENTES,%20Marc&LEGRAND,%20Pierrick&DEL%20MORAL,%20Pierre&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record