Afficher la notice abrégée

hal.structure.identifierBrown University
dc.contributor.authorOU, Yumeng
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorPETERMICHL, Stefanie
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSTROUSE, Elizabeth
dc.date.accessioned2024-04-04T03:19:12Z
dc.date.available2024-04-04T03:19:12Z
dc.date.created2015-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194484
dc.description.abstractEnWe consider iterated commutators of multiplication by a symbol function and tensor products of Hilbert or Riesz transforms. We establish mixed BMO classes of symbols that characterize boundedness of these objects in $L^p$. Little BMO and product BMO, big Hankel operators and iterated commutators are the base cases of our results. We use operator theoretical methods and existing profound results on iterated commutators for the Hilbert transform case, while the general result in several variables is obtained through the construction of a Journ\'e operator that models the behavior of the multiple Hilbert transform. Upper estimates for commutators with paraproduct free Journ\'e operators as well as weak factorisation results are proven.
dc.description.sponsorshipAux frontières de l'analyse Harmonique - ANR-12-BS01-0013
dc.language.isoen
dc.subject.enCommutators with bounded mean oscillation functions
dc.subject.enMulti-parameter
dc.title.enMixed commutators and little product BMO
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01109050
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01109050v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=OU,%20Yumeng&PETERMICHL,%20Stefanie&STROUSE,%20Elizabeth&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée