Show simple item record

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorMASCOT, Nicolas
dc.date.accessioned2024-04-04T03:19:09Z
dc.date.available2024-04-04T03:19:09Z
dc.date.created2014
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194479
dc.description.abstractEnWe give tables of modular Galois representations obtained using the algo-rithm which we described in [Mas13]. We computed Galois representations modulo primes up to 31 for the first time. In particular, we computed the representations attached to a newform with non-rational (but of course algebraic) coefficients, which had never been done before. These computations take place in the jacobian of modular curves of genus up to 26. We also show how these computation results can be partially proved.
dc.language.isoen
dc.subject.enGalois representations
dc.subject.enmodular forms
dc.subject.enalgorithmic
dc.subject.enGalois theory
dc.title.enTables of modular Galois representations
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1312.6418
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01110252
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01110252v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MASCOT,%20Nicolas&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record