Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDESHOUILLERS, Jean-Marc
dc.date.accessioned2024-04-04T03:19:07Z
dc.date.available2024-04-04T03:19:07Z
dc.date.issued2005-01-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194476
dc.description.abstractEnLet $c>\sqrt{2}$ and let $p$ be a prime number. J-M. Deshouillers and G. A. Freiman proved that a subset $\mathcal A$ of $\mathbb{Z}/p\mathbb{Z}$, with cardinality larger than $c\sqrt{p}$ and such that its subset sums do not cover $\mathbb{Z}/p\mathbb{Z}$ has an isomorphic image which is rather concentrated; more precisely, there exists $s$ prime to $p$ such that $$\sum_{a\in\mathcal A}\Vert\frac{as}{p}\Vert < 1+O(p^{-1/4}\ln p),$$ where the constant implied in the ``O'' symbol depends on $c$ at most. We show here that there exist a $K$ depending on $c$ at most, and such sets $\mathcal A$, such that for all $s$ prime to $p$ one has $$ \sum_{a\in\mathcal A}\Vert\frac{as}{p}\Vert>1+Kp^{-1/2}.$$
dc.language.isoen
dc.publisherHardy-Ramanujan Society
dc.subject.enupper bound for the error term
dc.subject.enresidue classes modulo $p$
dc.title.enA lower bound concerning subset sums which do not cover all the residues modulo $p$.
dc.typeArticle de revue
dc.identifier.doi10.46298/hrj.2005.85
dc.subject.halMathématiques [math]
bordeaux.journalHardy-Ramanujan Journal
bordeaux.page30-34
bordeaux.volumeVolume 28 - 2005
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01110947
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01110947v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Hardy-Ramanujan%20Journal&amp;rft.date=2005-01-01&amp;rft.volume=Volume%2028%20-%202005&amp;rft.spage=30-34&amp;rft.epage=30-34&amp;rft.au=DESHOUILLERS,%20Jean-Marc&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée