A short proof of the zero-two law for cosine functions
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ESTERLE, Jean | |
dc.date.accessioned | 2024-04-04T03:18:32Z | |
dc.date.available | 2024-04-04T03:18:32Z | |
dc.date.created | 2015-05-01 | |
dc.date.issued | 2015-10 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194414 | |
dc.description.abstractEn | Let $(C(t))_{t\in \R}$ be a cosine function in a unital Banach algebra. We give a simple proof of the fact that if lim sup$_{t\to 0}\Vert C(t)-1_A\Vert<2,$ then lim sup$_{t\to 0}\Vert C(t)-1_A\Vert=0.$ | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | 47D09 | |
dc.subject.en | Secondary 26A99 | |
dc.subject.en | commutative local Banach algebra AMS classification : Primary 46J45 | |
dc.subject.en | Cosine function | |
dc.subject.en | scalar cosine function | |
dc.title.en | A short proof of the zero-two law for cosine functions | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.identifier.arxiv | 1505.06065 | |
bordeaux.journal | Archiv der Mathematik | |
bordeaux.page | 381-387 | |
bordeaux.volume | 105 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01147799 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01147799v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Archiv%20der%20Mathematik&rft.date=2015-10&rft.volume=105&rft.issue=4&rft.spage=381-387&rft.epage=381-387&rft.eissn=0003-889X&rft.issn=0003-889X&rft.au=ESTERLE,%20Jean&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |