Towards a large-scale scalable adaptive heart model using shallow tree meshes
hal.structure.identifier | Institute of Computational Science | |
dc.contributor.author | KRAUSE, Dorian | |
hal.structure.identifier | Zentrum Mathematik [Munchen] [TUM] | |
dc.contributor.author | DICKOPF, Thomas | |
hal.structure.identifier | Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN] | |
hal.structure.identifier | Center for Computational Medicine in Cardiology [CCMC] | |
hal.structure.identifier | IHU-LIRYC | |
dc.contributor.author | POTSE, Mark | |
hal.structure.identifier | Center for Computational Medicine in Cardiology [CCMC] | |
hal.structure.identifier | Institute of Computational Science | |
dc.contributor.author | KRAUSE, Rolf | |
dc.date.created | 2015-05-05 | |
dc.date.issued | 2015-10-01 | |
dc.identifier.issn | 0021-9991 | |
dc.description.abstractEn | Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.title.en | Towards a large-scale scalable adaptive heart model using shallow tree meshes | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jcp.2015.05.005 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire | |
bordeaux.journal | Journal of Computational Physics | |
bordeaux.page | 79-94 | |
bordeaux.volume | 298 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01163404 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01163404v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2015-10-01&rft.volume=298&rft.spage=79-94&rft.epage=79-94&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=KRAUSE,%20Dorian&DICKOPF,%20Thomas&POTSE,%20Mark&KRAUSE,%20Rolf&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |