Afficher la notice abrégée

hal.structure.identifierInstitute of Computational Science
dc.contributor.authorKRAUSE, Dorian
hal.structure.identifierZentrum Mathematik [Munchen] [TUM]
dc.contributor.authorDICKOPF, Thomas
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierCenter for Computational Medicine in Cardiology [CCMC]
hal.structure.identifierIHU-LIRYC
dc.contributor.authorPOTSE, Mark
hal.structure.identifierCenter for Computational Medicine in Cardiology [CCMC]
hal.structure.identifierInstitute of Computational Science
dc.contributor.authorKRAUSE, Rolf
dc.date.created2015-05-05
dc.date.issued2015-10-01
dc.identifier.issn0021-9991
dc.description.abstractEnElectrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.
dc.language.isoen
dc.publisherElsevier
dc.title.enTowards a large-scale scalable adaptive heart model using shallow tree meshes
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2015.05.005
dc.subject.halMathématiques [math]
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
bordeaux.journalJournal of Computational Physics
bordeaux.page79-94
bordeaux.volume298
bordeaux.peerReviewedoui
hal.identifierhal-01163404
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01163404v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2015-10-01&rft.volume=298&rft.spage=79-94&rft.epage=79-94&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=KRAUSE,%20Dorian&DICKOPF,%20Thomas&POTSE,%20Mark&KRAUSE,%20Rolf&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée