Towards a large-scale scalable adaptive heart model using shallow tree meshes
POTSE, Mark
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Center for Computational Medicine in Cardiology [CCMC]
IHU-LIRYC
Leer más >
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Center for Computational Medicine in Cardiology [CCMC]
IHU-LIRYC
POTSE, Mark
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Center for Computational Medicine in Cardiology [CCMC]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Center for Computational Medicine in Cardiology [CCMC]
IHU-LIRYC
KRAUSE, Rolf
Center for Computational Medicine in Cardiology [CCMC]
Institute of Computational Science
< Leer menos
Center for Computational Medicine in Cardiology [CCMC]
Institute of Computational Science
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Computational Physics. 2015-10-01, vol. 298, p. 79-94
Elsevier
Resumen en inglés
Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address ...Leer más >
Electrophysiological heart models are sophisticated computational tools that place high demands on the computing hardware due to the high spatial resolution required to capture the steep depolarization front. To address this challenge, we present a novel adaptive scheme for resolving the deporalization front accurately using adaptivity in space. Our adaptive scheme is based on locally structured meshes. These tensor meshes in space are organized in a parallel forest of trees, which allows us to resolve complicated geometries and to realize high variations in the local mesh sizes with a minimal memory footprint in the adaptive scheme. We discuss both a non-conforming mortar element approximation and a conforming finite element space and present an efficient technique for the assembly of the respective stiffness matrices using matrix representations of the inclusion operators into the product space on the so-called shallow tree meshes. We analyzed the parallel performance and scalability for a two-dimensional ventricle slice as well as for a full large-scale heart model. Our results demonstrate that the method has good performance and high accuracy.< Leer menos
Orígen
Importado de HalCentros de investigación