Show simple item record

hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMILIO, Enea
dc.date.accessioned2024-04-04T03:17:58Z
dc.date.available2024-04-04T03:17:58Z
dc.date.issued2015
dc.identifier.issn1461-1570
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194356
dc.description.abstractEnWe propose to generalize the work of Régis Dupont for computing modular polynomials in dimension 2 to new invariants. We describe an algorithm to compute modular polynomials for invariants derived from theta constants and prove under some heuristics that this algorithm is quasi-linearin its output size. Some properties of the modular polynomials defined from quotients of theta constants are analyzed.We report on experiments with our implementation.
dc.language.isoen
dc.publisherLondon Mathematical Society
dc.rights.urihttp://hal.archives-ouvertes.fr/licences/copyright/
dc.title.enA quasi-linear time algorithm for computing modular polynomials in dimension 2
dc.typeArticle de revue
dc.subject.halMathématiques [math]
dc.description.sponsorshipEuropeAlgorithmic Number Theory in Computer Science
bordeaux.journalLMS Journal of Computation and Mathematics
bordeaux.page603-632
bordeaux.volume18
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01080462
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01080462v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=LMS%20Journal%20of%20Computation%20and%20Mathematics&rft.date=2015&rft.volume=18&rft.spage=603-632&rft.epage=603-632&rft.eissn=1461-1570&rft.issn=1461-1570&rft.au=MILIO,%20Enea&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record