A quasi-linear time algorithm for computing modular polynomials in dimension 2
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MILIO, Enea | |
dc.date.accessioned | 2024-04-04T03:17:58Z | |
dc.date.available | 2024-04-04T03:17:58Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1461-1570 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/194356 | |
dc.description.abstractEn | We propose to generalize the work of Régis Dupont for computing modular polynomials in dimension 2 to new invariants. We describe an algorithm to compute modular polynomials for invariants derived from theta constants and prove under some heuristics that this algorithm is quasi-linearin its output size. Some properties of the modular polynomials defined from quotients of theta constants are analyzed.We report on experiments with our implementation. | |
dc.language.iso | en | |
dc.publisher | London Mathematical Society | |
dc.rights.uri | http://hal.archives-ouvertes.fr/licences/copyright/ | |
dc.title.en | A quasi-linear time algorithm for computing modular polynomials in dimension 2 | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math] | |
dc.description.sponsorshipEurope | Algorithmic Number Theory in Computer Science | |
bordeaux.journal | LMS Journal of Computation and Mathematics | |
bordeaux.page | 603-632 | |
bordeaux.volume | 18 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01080462 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01080462v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=LMS%20Journal%20of%20Computation%20and%20Mathematics&rft.date=2015&rft.volume=18&rft.spage=603-632&rft.epage=603-632&rft.eissn=1461-1570&rft.issn=1461-1570&rft.au=MILIO,%20Enea&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |