Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorMAUBON, Julien
dc.date.accessioned2024-04-04T03:15:39Z
dc.date.available2024-04-04T03:15:39Z
dc.date.created2015
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194158
dc.description.abstractEnWe prove an equidistribution result for totally geodesic submanifolds in a compact locally symmetric space. In the case of Hermitian locally symmetric spaces, this gives a convergence theorem for currents of integration along totally geodesic subvarieties. As a corollary, we obtain that on a complex surface which is a compact quotient of the bidisc or of the 2-ball, there is at most a finite number of totally geodesic curves with negative self intersection. More generally, we prove that there are only finitely many exceptional totally geodesic divisors in a compact Hermitian locally symmetric space of the noncompact type of dimension at least 2.
dc.language.isoen
dc.title.enOn the equidistribution of totally geodesic submanifolds in compact locally symmetric spaces and application to boundedness results for negative curves and exceptional divisors
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.subject.halMathématiques [math]/Géométrie algébrique [math.AG]
dc.identifier.arxiv1407.6561v3
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01266101
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01266101v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée