Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Jussieu [IMJ]
hal.structure.identifierInstitute for Advanced Study [IAS]
dc.contributor.authorKLINGLER, Bruno
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierInstitut Élie Cartan de Nancy [IECN]
dc.contributor.authorMAUBON, Julien
dc.date.accessioned2024-04-04T03:15:20Z
dc.date.available2024-04-04T03:15:20Z
dc.date.issued2011-04
dc.identifier.issn1016-443X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/194142
dc.description.abstractEnCarlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact Kähler manifold, then virtually H^2(Γ,ℝ)≠0 . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure (ℂ -VHS) on the Kähler manifold. We prove the conjecture under some assumption on the ℂ -VHS. We also study some related geometric/topological properties of period domains associated to such a ℂ -VHS.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enOn the Second Cohomology of Kähler Groups
dc.typeArticle de revue
dc.identifier.doi10.1007/s00039-011-0114-y
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.identifier.arxiv1004.3130v2
bordeaux.journalGeometric And Functional Analysis
bordeaux.volume21
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01275541
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01275541v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geometric%20And%20Functional%20Analysis&rft.date=2011-04&rft.volume=21&rft.issue=2&rft.eissn=1016-443X&rft.issn=1016-443X&rft.au=KLINGLER,%20Bruno&KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée