Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSAUT, Olivier
hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
dc.contributor.authorBOURGEADE, Antoine
dc.date.issued2006-04-10
dc.identifier.issn0021-9991
dc.description.abstractEnTwo numerical schemes are developed for solutions of the bidimensional Maxwell–Bloch equations in nonlinear optical crystals. The Maxwell–Bloch model was recently extended [C. Besse, B. Bidégaray, A. Bourgeade, P. Degond, O. Saut, A Maxwell–Bloch model with discrete symmetries for wave propagation in nonlinear crystals: an application to KDP, M2AN Math. Model. Numer. Anal. 38 (2) (2004) 321–344] to treat anisotropic materials like nonlinear crystals. This semi-classical model seems to be adequate to describe the wave–matter interaction of ultrashort pulses in nonlinear crystals [A. Bourgeade, O. Saut, Comparison between the Maxwell–Bloch and two nonlinear maxwell models for ultrashort pulses propagation in nonlinear crystals, submitted (2004)] as it is closer to the physics than most macroscopic models. A bidimensional finite-difference-time-domain scheme, adapted from Yee [IEEE Trans. Antennas Propag. AP-14 (1966) 302–307], was already developed in [O. Saut, Bidimensional study of the Maxwell–Bloch model in a nonlinear crystal, submitted (2004)]. This scheme yields very expensive computations. In this paper, we present two numerical schemes much more efficient with their relative advantages and drawbacks.
dc.language.isoen
dc.publisherElsevier
dc.subject.enNonlinear optics
dc.subject.enHarmonic generation
dc.subject.enQuantum description of light and matter
dc.subject.enNonlinear optical crystal
dc.subject.enNumerical schemes
dc.title.enNumerical methods for the bidimensional Maxwell–Bloch equations in nonlinear crystals
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2005.09.003
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
bordeaux.journalJournal of Computational Physics
bordeaux.pageIssue 2, Pages 823-843
bordeaux.volume213
bordeaux.peerReviewedoui
hal.identifierhal-00131958
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00131958v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2006-04-10&rft.volume=213&rft.spage=Issue%202,%20Pages%20823-843&rft.epage=Issue%202,%20Pages%20823-843&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=SAUT,%20Olivier&BOURGEADE,%20Antoine&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record