Finite dimensional approximations for a class of infinite dimensional time optimal control problems
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TUCSNAK, Marius | |
hal.structure.identifier | Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX] | |
hal.structure.identifier | Institut Élie Cartan de Lorraine [IECL] | |
dc.contributor.author | VALEIN, Julie | |
hal.structure.identifier | Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX] | |
hal.structure.identifier | Institut Élie Cartan de Lorraine [IECL] | |
dc.contributor.author | WU, Chi-Ting | |
dc.date.accessioned | 2024-04-04T03:13:09Z | |
dc.date.available | 2024-04-04T03:13:09Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0020-7179 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193930 | |
dc.description.abstractEn | In this work we study the numerical approximation of the solutions of a class of abstract parabolic time optimal control problems with unbounded control operator. Our main results assert that, provided that the target is a closed ball centered at the origin and of positive radius, the optimal time and the optimal controls of the approximate time optimal problems converge (in appropriate norms) to the optimal time and to the optimal controls of the original problem. In order to prove our main theorem, we provide a nonsmooth data error estimate for abstract parabolic systems. | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis | |
dc.subject.en | distributed parameter systems | |
dc.subject.en | optimal control | |
dc.subject.en | numerical approximation AMS subject classifications 93C25 | |
dc.title.en | Finite dimensional approximations for a class of infinite dimensional time optimal control problems | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1080/00207179.2016.1228122 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | International Journal of Control | |
bordeaux.page | 132-144 | |
bordeaux.volume | 92 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01393258 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01393258v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Control&rft.date=2019&rft.volume=92&rft.issue=1&rft.spage=132-144&rft.epage=132-144&rft.eissn=0020-7179&rft.issn=0020-7179&rft.au=TUCSNAK,%20Marius&VALEIN,%20Julie&WU,%20Chi-Ting&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |