Show simple item record

hal.structure.identifierLaboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT]
dc.contributor.authorLASSOUED, Jamila
hal.structure.identifierLaboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT]
dc.contributor.authorMAHJOUB, Moncef
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
hal.structure.identifierIHU-LIRYC
dc.contributor.authorZEMZEMI, Nejib
dc.date.accessioned2024-04-04T03:12:57Z
dc.date.available2024-04-04T03:12:57Z
dc.date.issued2016
dc.identifier.issn0266-5611
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193912
dc.description.abstractEnIn this paper we prove a stability estimate of the parameter identification problem in cardiac electrophysiology modeling. We use the monodomain model which is a reaction diffusion parabolic equation where the reaction term is obtained by solving an ordinary differential equation. We are interested in proving the stability of the identification of the parameter τ in which is the parameter that multiplies the cubic term in the reaction term. The proof of the result is based on a new Carleman-type estimate for both the PDE and ODE problems. As a consequence of the stability result we prove the uniqueness of the parameter τ in giving some observations of both state variables at a given time t 0 in the whole domain and the PDE variable in a non empty open subset w 0 of the domain.
dc.language.isoen
dc.publisherIOP Publishing
dc.subject.enMitchell-Schaeffer model
dc.subject.enMonodomain system
dc.subject.enstability result
dc.subject.enIonic parameters Submitted to: Inverse Problems
dc.subject.enParameter identification
dc.subject.enCarleman inequality
dc.title.enStability results for the parameter identification inverse problem in cardiac electrophysiology
dc.typeArticle de revue
dc.identifier.doi10.1088/0266-5611/32/11/115002
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalInverse Problems
bordeaux.page1-31
bordeaux.volume32
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue11
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01399373
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01399373v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inverse%20Problems&rft.date=2016&rft.volume=32&rft.issue=11&rft.spage=1-31&rft.epage=1-31&rft.eissn=0266-5611&rft.issn=0266-5611&rft.au=LASSOUED,%20Jamila&MAHJOUB,%20Moncef&ZEMZEMI,%20Nejib&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record