Show simple item record

hal.structure.identifierGroupe de Recherche en Electromagnétisme [LAPLACE-GRE]
dc.contributor.authorPERRUSSEL, Ronan
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
hal.structure.identifierLaboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
hal.structure.identifierAdvanced 3D Numerical Modeling in Geophysics [Magique 3D]
dc.contributor.authorPÉRON, Victor
hal.structure.identifierCatholic University of Leuven = Katholieke Universiteit Leuven [KU Leuven]
dc.contributor.authorSABARIEGO, Ruth
hal.structure.identifierApplied and Computational Electromagnetics [Liège] [ACE]
dc.contributor.authorDULAR, Patrick
hal.structure.identifierAmpère, Département Méthodes pour l'Ingénierie des Systèmes [MIS]
dc.contributor.authorKRÄHENBÜHL, Laurent
dc.date.accessioned2024-04-04T03:12:16Z
dc.date.available2024-04-04T03:12:16Z
dc.date.conference2016-04-12
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193853
dc.description.abstractEnAsymptotics consist in formal series of the solution to a problem which involves a small parameter. When truncated at a certain order, this finite sum provides an approximation of the exact solution with a given accuracy, and the coefficients of this sum are solutions to elementary problems that do not depend on the small parameter. This parameter can be for instance the thickness of the domain or a small or high conductivity coefficient. The asymptotic expansion is a useful tool to obtain approximate expressions of the solution to the so-called Eddy Current problem, which describes the magnetic potential in a material composed by a dielectric material surrounding a conductor.However such expansions are derivatives consuming, in the sense that to go further in the expansion, it is necessary to compute the higher derivatives of the first orders terms, and it also requires a precise knowledge of the geometry, since derivatives of the parameterization of the interface dielectric/conductor are involved. From the numerical point of view, this can lead to instabilities which may restrict or prevent a direct use of the asymptotic expansion. This mathematical approach complements our previous works on “deltaparametrization”.In particular, we will show that several expansions can be involved when considering magnetic conductors depending on the product of the relative permeability of the conductor by the penetration depth. As an example, for the same geometry, boundary conditions and penetration depth we obtain two “very” distinct behaviours (left, f = 10kHz and mur = 1 and right, f = 10Hz and mur = 1000).
dc.language.isoen
dc.source.titleProceedings of the 10th International Symposium on Electric and Magnetic Fields
dc.title.enAsymptotic expansion for the magnetic potential in the eddy-current problem
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.title10th EMF
bordeaux.countryFR
bordeaux.title.proceedingProceedings of the 10th International Symposium on Electric and Magnetic Fields
bordeaux.conference.cityLyon
bordeaux.peerReviewedoui
hal.identifierhal-01393362
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2016-04-14
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01393362v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Proceedings%20of%20the%2010th%20International%20Symposium%20on%20Electric%20and%20Magnetic%20Fields&rft.au=PERRUSSEL,%20Ronan&POIGNARD,%20Clair&P%C3%89RON,%20Victor&SABARIEGO,%20Ruth&DULAR,%20Patrick&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record