Mostrar el registro sencillo del ítem
Clustering of Variables for Mixed Data
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Ecole Nationale Supérieure de Cognitique [ENSC] | |
dc.contributor.author | SARACCO, Jerome | |
hal.structure.identifier | Quality control and dynamic reliability [CQFD] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CHAVENT, Marie | |
dc.date.accessioned | 2024-04-04T03:12:13Z | |
dc.date.available | 2024-04-04T03:12:13Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-2-7598-9001-9 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193847 | |
dc.description.abstractEn | This chapter presents clustering of variables which aim is to lump together strongly related variables. The proposed approach works on a mixed data set, i.e. on a data set which contains numerical variables and categorical variables. Two algorithms of clustering of variables are described: a hierarchical clustering and a k-means type clustering. A brief description of PCAmix method (that is a principal component analysis for mixed data) is provided, since the calculus of the synthetic variables summarizing the obtained clusters of variables is based on this multivariate method. Finally, the R packages {\bf ClustOfVar} and {\bf PCAmixdata} are illustrated on real mixed data. The PCAmix (resp. ClustOfVar) approach is first used for dimension reduction (step1) before standard clustering of the individuals (step 2). | |
dc.language.iso | en | |
dc.publisher | EDP Sciences | |
dc.source.title | Statistics for Astrophysics: Clustering and Classification | |
dc.title.en | Clustering of Variables for Mixed Data | |
dc.type | Chapitre d'ouvrage | |
dc.subject.hal | Statistiques [stat] | |
bordeaux.page | 91-119 | |
bordeaux.volume | 77 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.title.proceeding | Statistics for Astrophysics: Clustering and Classification | |
hal.identifier | hal-01417442 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01417442v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Statistics%20for%20Astrophysics:%20Clustering%20and%20Classification&rft.date=2016&rft.volume=77&rft.spage=91-119&rft.epage=91-119&rft.au=SARACCO,%20Jerome&CHAVENT,%20Marie&rft.isbn=978-2-7598-9001-9&rft.genre=unknown |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |