Combining dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem
hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CLAUTIAUX, François | |
hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | SADYKOV, Ruslan | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
dc.contributor.author | VANDERBECK, François | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
dc.contributor.author | VIAUD, Quentin | |
dc.date.accessioned | 2024-04-04T03:11:56Z | |
dc.date.available | 2024-04-04T03:11:56Z | |
dc.date.created | 2016-12-16 | |
dc.date.issued | 2018-02-13 | |
dc.identifier.issn | 1572-5286 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193816 | |
dc.description.abstractEn | The two-dimensional knapsack problem consists in packing a set of small rectangular items into a given large rectangle while maximizing the total reward associated with selected items. We restrict our attention to packings that emanate from a k-stage guillotine-cut process. We introduce a generic model where a knapsack solution is represented by a flow in a directed acyclic hypergraph. This hypergraph model derives from a forward labeling dynamic programming recursion that enumerates all non-dominated feasible cutting patterns. To reduce the hypergraph size, we make use of further dominance rules and a filtering procedure based on Lagrangian reduced costs fixing of hyperarcs. Our hypergraph model is (incrementally) extended to account for explicit bounds on the number of copies of each item. Our exact forward labeling algorithm is numerically compared to solving the max-cost flow model in the base hyper-graph with side constraints to model production bounds. Benchmarks are reported on instances from the literature and on datasets derived from a real-world application. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Cutting and Packing | |
dc.subject.en | Dynamic Programming | |
dc.subject.en | Lagrangian Filtering | |
dc.subject.en | Reduced-Cost Fixing | |
dc.title.en | Combining dynamic programming with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.disopt.2018.02.003 | |
dc.subject.hal | Informatique [cs]/Recherche opérationnelle [cs.RO] | |
bordeaux.journal | Discrete Optimization | |
bordeaux.page | 18-44 | |
bordeaux.volume | 29 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01426690 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01426690v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20Optimization&rft.date=2018-02-13&rft.volume=29&rft.spage=18-44&rft.epage=18-44&rft.eissn=1572-5286&rft.issn=1572-5286&rft.au=CLAUTIAUX,%20Fran%C3%A7ois&SADYKOV,%20Ruslan&VANDERBECK,%20Fran%C3%A7ois&VIAUD,%20Quentin&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |