Amalgamated free product type III factors with at most one Cartan subalgebra
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BOUTONNET, Rémi | |
hal.structure.identifier | Université Paris Descartes - Paris 5 [UPD5] | |
dc.contributor.author | HOUDAYER, Cyril | |
hal.structure.identifier | Ecole Polytechnique Fédérale de Lausanne [EPFL] | |
dc.contributor.author | RAUM, Sven | |
dc.date.accessioned | 2024-04-04T03:11:20Z | |
dc.date.available | 2024-04-04T03:11:20Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0010-437X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193770 | |
dc.description.abstractEn | We investigate Cartan subalgebras in nontracial amalgamated free product von Neumann algebras M1 * B M2 over an amenable von Neumann subalgebra B. First, we settle the problem of the absence of Cartan subalgebra in arbitrary free product von Neumann algebras. Namely, we show that any nonamenable free product von Neumann algebra (M1, ϕ1) * (M2, ϕ2) with respect to faithful normal states has no Cartan subalgebra. This generalizes the tracial case that was established in [Io12a]. Next, we prove that any countable nonsingular ergodic equivalence relation R defined on a standard measure space and which splits as the free product R = R1 * R2 of recurrent subequivalence relations gives rise to a nonamenable factor L(R) with a unique Cartan subalgebra, up to unitary conjugacy. Finally, we prove unique Cartan decomposition for a class of group measure space factors L ∞ (X) ⋊ Γ arising from nonsingular free ergodic actions Γ (X, µ) on standard measure spaces of amalgamated groups Γ = Γ1 * Σ Γ2 over a finite subgroup Σ. | |
dc.language.iso | en | |
dc.publisher | Foundation Compositio Mathematica | |
dc.title.en | Amalgamated free product type III factors with at most one Cartan subalgebra | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1112/S0010437X13007537 | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Algèbres d'opérateurs [math.OA] | |
dc.subject.hal | Mathématiques [math]/Systèmes dynamiques [math.DS] | |
bordeaux.journal | Compositio Mathematica | |
bordeaux.page | 143 - 174 | |
bordeaux.volume | 150 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01447553 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01447553v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Compositio%20Mathematica&rft.date=2014&rft.volume=150&rft.spage=143%20-%20174&rft.epage=143%20-%20174&rft.eissn=0010-437X&rft.issn=0010-437X&rft.au=BOUTONNET,%20R%C3%A9mi&HOUDAYER,%20Cyril&RAUM,%20Sven&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |