Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBOUTONNET, Rémi
hal.structure.identifierTechnische Universität Dresden = Dresden University of Technology [TU Dresden]
dc.contributor.authorCARDERI, Alessandro
dc.date.accessioned2024-04-04T03:11:19Z
dc.date.available2024-04-04T03:11:19Z
dc.date.created2014
dc.date.issued2015
dc.identifier.issn1016-443X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193768
dc.description.abstractEnWe provide a general criterion to deduce maximal amenability of von Neumann subalgebras LΛ ⊂ LΓ arising from amenable subgroups Λ of discrete countable groups Γ. The criterion is expressed in terms of Λ-invariant measures on some compact Γ-space. The strategy of proof is different from S. Popa's approach to maximal amenability via central sequences [Po83], and relies on elementary computations in a crossed-product C *-algebra.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enMaximal amenable subalgebras arising from maximal amenable subgroups
dc.typeArticle de revue
dc.identifier.doi10.1007/s00039-015-0348-1
dc.subject.halMathématiques [math]/Théorie des groupes [math.GR]
dc.subject.halMathématiques [math]/Algèbres d'opérateurs [math.OA]
dc.subject.halMathématiques [math]/Systèmes dynamiques [math.DS]
bordeaux.journalGeometric And Functional Analysis
bordeaux.page1688-1705
bordeaux.volume25
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01447555
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01447555v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Geometric%20And%20Functional%20Analysis&rft.date=2015&rft.volume=25&rft.issue=6&rft.spage=1688-1705&rft.epage=1688-1705&rft.eissn=1016-443X&rft.issn=1016-443X&rft.au=BOUTONNET,%20R%C3%A9mi&CARDERI,%20Alessandro&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem