$L^2$ well posed Cauchy Problems and Symmetrizability of First Order Systems
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | METIVIER, Guy | |
dc.date.accessioned | 2024-04-04T03:11:18Z | |
dc.date.available | 2024-04-04T03:11:18Z | |
dc.date.created | 2013-10-03 | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2429-7100 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193765 | |
dc.description.abstractEn | The Cauchy problem for first order system $L(t, x, \D_t, \D_x)$ is known to be well posed in $L^2$ when a it admits a microlocal symmetrizer $S(t,x, \xi)$ which is smooth in $\xi$ and Lipschitz continuous in $(t, x)$. This paper contains three main results. First we show that a Lipsshitz smoothness globally in $(t,x, \xi)$ is sufficient. Second, we show that the existence of symmetrizers with a given smoothness is equivalent to the existence of \emph{full symmetrizers} having the same smoothness. This notion was first introduced in \cite{FriLa1}. This is the key point to prove the third result that the existence of microlocal symmetrizer is preserved if one changes the direction of time, implying local uniqueness and finite speed of propagation. | |
dc.language.iso | en | |
dc.publisher | École polytechnique | |
dc.subject.en | Hyperbolic | |
dc.subject.en | systems of partial differential equations | |
dc.subject.en | symmerizers | |
dc.subject.en | energie estimate | |
dc.subject.en | finite speed of propgagation | |
dc.title.en | $L^2$ well posed Cauchy Problems and Symmetrizability of First Order Systems | |
dc.type | Article de revue | |
dc.identifier.doi | 10.5427/jep.2014 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.identifier.arxiv | 1310.4760 | |
bordeaux.journal | Journal de l'École polytechnique — Mathématiques | |
bordeaux.page | pp 39 -- 70 | |
bordeaux.volume | 1 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00873785 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00873785v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20de%20l'%C3%89cole%20polytechnique%20%E2%80%94%20Math%C3%A9matiques&rft.date=2014&rft.volume=1&rft.spage=pp%2039%20--%2070&rft.epage=pp%2039%20--%2070&rft.eissn=2429-7100&rft.issn=2429-7100&rft.au=METIVIER,%20Guy&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |