Heights on square of modular curves
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PARENT, Pierre | |
dc.date.accessioned | 2024-04-04T03:11:18Z | |
dc.date.available | 2024-04-04T03:11:18Z | |
dc.date.created | 2016-07-01 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193764 | |
dc.description.abstractEn | We develop a strategy for bounding from above the height of rational points of modular curves with values in number fields, by functions which are polynomial in the level. Our main technical tools come from effective arakelovian descriptions of modular curves and jacobians. We then fulfill this program in the following particular case: If~$p$ is a not-too-small prime number, let~$X_0 (p )$ be the classical modular curve of level $p$ over $\Q$. Assume Brumer's conjecture on the dimension of winding quotients of $J_0 (p)$. We prove that there is a function $b(p)=O(p^{13} )$ (depending only on $p$) such that, for any quadratic number field $K$, the $j$-height of points in $X_0 (p ) (K)$ which are not lift of elements of $X_0 (p)/w_p (\Q )$, is less or equal to~$b(p)$. | |
dc.language.iso | en | |
dc.subject.en | Modular curves | |
dc.subject.en | modular jacobians | |
dc.subject.en | Arakelov theory | |
dc.subject.en | arithmetic Bézout theorems | |
dc.title.en | Heights on square of modular curves | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1606.09553v1 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01448316 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01448316v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PARENT,%20Pierre&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |