Show simple item record

hal.structure.identifierCentre d'études et de recherche en informatique et communications [CEDRIC]
dc.contributor.authorPORUMBEL, Daniel
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCLAUTIAUX, François
dc.date.accessioned2024-04-04T03:11:05Z
dc.date.available2024-04-04T03:11:05Z
dc.date.issued2017
dc.identifier.issn1091-9856
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193741
dc.description.abstractEnExtended formulations are now widely used to solve hard combinatorial optimization problems. Such formulations have prohibitively-many variables and are generally solved via Column Generation (CG). CG algorithms are known to have frequent convergence issues, and, up to a sometimes large number of iterations, classical Lagrangian dual bounds may be weak. This paper is devoted to set-covering problems in which all elements to cover require a given resource consumption and all feasible configurations have to verify a resource constraint. We propose an iterative aggregation method for determining convergent dual bounds using the extended formulation of such problems. The set of dual variables is partitioned into k groups and all variables in each group are artificially linked using the following groupwise restriction: the dual values in a group have to follow a linear function of their corresponding resource consumptions. This leads to a restricted model of smaller dimension, with only 2k dual variables. The method starts with one group (k = 1) and iteratively splits the groups. Our algorithm has three advantages: (i) it produces good dual bounds even for low k values, (ii) it reduces the number of dual variables, and (iii) it may reduce the time needed to solve sub-problems, in particular when dynamic programming is used. We experimentally tested our approach on two variants of the cutting-stock problem: in many cases, the method produces near optimal dual bounds after a small number of iterations. Moreover the average computational effort to reach the optimum is reduced compared to a classical column generation algorithm.
dc.language.isoen
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)
dc.title.enConvergent Dual Bounds Using an Aggregation of Set-Covering Constraints for Capacitated Problems
dc.typeArticle de revue
dc.identifier.doi10.1287/ijoc.2016.0718
dc.subject.halInformatique [cs]/Recherche opérationnelle [cs.RO]
bordeaux.journalINFORMS Journal on Computing
bordeaux.page15
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01410195
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01410195v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=INFORMS%20Journal%20on%20Computing&rft.date=2017&rft.volume=29&rft.issue=1&rft.spage=15&rft.epage=15&rft.eissn=1091-9856&rft.issn=1091-9856&rft.au=PORUMBEL,%20Daniel&CLAUTIAUX,%20Fran%C3%A7ois&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record