Mostrar el registro sencillo del ítem

hal.structure.identifierThales Research and Technology [Palaiseau]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLE BRIGANT, Alice
dc.date.accessioned2024-04-04T03:10:44Z
dc.date.available2024-04-04T03:10:44Z
dc.date.created2016-01
dc.date.issued2017-06
dc.identifier.issn1941-4889
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193710
dc.description.abstractEnThis paper focuses on the study of open curves in a Riemannian manifold M, and proposes a reparametrization invariant metric on the space of such paths. We use the square root velocity function (SRVF) introduced by Srivastava et al. to define a Riemannian metric on the space of immersions M'=Imm([0,1],M) by pullback of a natural metric on the tangent bundle TM'. This induces a first-order Sobolev metric on M' and leads to a distance which takes into account the distance between the origins in M and the L2-distance between the SRV representations of the curves. The geodesic equations for this metric are given and exploited to define an exponential map on M'. The optimal deformation of one curve into another can then be constructed using geodesic shooting, which requires to characterize the Jacobi fields of M'. The particular case of curves lying in the hyperbolic half-plane is considered as an example, in the setting of radar signal processing.
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.subject.enReparametrization invariance
dc.subject.enSobolev metric
dc.subject.enGeodesic Shooting
dc.subject.enSquare Root Velocity Function
dc.title.enComputing distances and geodesics between manifold-valued curves in the SRV framework
dc.typeArticle de revue
dc.identifier.doi10.3934/jgm.2017005
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.identifier.arxiv1601.02358
bordeaux.journalJournal of Geometric Mechanics
bordeaux.page131-156
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01253495
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01253495v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Geometric%20Mechanics&rft.date=2017-06&rft.volume=9&rft.issue=2&rft.spage=131-156&rft.epage=131-156&rft.eissn=1941-4889&rft.issn=1941-4889&rft.au=LE%20BRIGANT,%20Alice&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem