Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDENIS DE SENNEVILLE, Baudouin
hal.structure.identifierImagerie moléculaire et fonctionnelle: de la physiologie à la thérapie
dc.contributor.authorROUJOL, Sébastien
hal.structure.identifierImagerie moléculaire et fonctionnelle: de la physiologie à la thérapie
dc.contributor.authorHEY, Silke
hal.structure.identifierImagerie moléculaire et fonctionnelle: de la physiologie à la thérapie
dc.contributor.authorMOONEN, Chrit
hal.structure.identifierUniversity Medical Center [Utrecht] [UMCU]
dc.contributor.authorRIES, Mario
dc.date.accessioned2024-04-04T03:09:18Z
dc.date.available2024-04-04T03:09:18Z
dc.date.issued2013
dc.identifier.issn0278-0062
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193593
dc.description.abstractEnReal time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available Signal to Noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near-and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows: The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3D data derived from a forecast based on a physical model were combined using an Extended Kalman Filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex-vivo on a phantom , and in-vivo on a porcine kidney, using HIFU heating. On the in-vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3D dataset covering a field of view of 142.5×285×54 mm 3 with a voxel size of 3×3×6 mm 3 and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers
dc.subject.enMagnetic Resonance Imaging
dc.subject.enReal time systems
dc.subject.enMotion analysis
dc.title.enExtended Kalman Filtering for Continuous Volumetric MR-Temperature Imaging
dc.typeArticle de revue
dc.identifier.doi10.1109/TMI.2012.2234760
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halSciences du Vivant [q-bio]/Ingénierie biomédicale/Imagerie
bordeaux.journalIEEE Transactions on Medical Imaging
bordeaux.page711-718
bordeaux.volume32
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01578187
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01578187v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=IEEE%20Transactions%20on%20Medical%20Imaging&rft.date=2013&rft.volume=32&rft.issue=4&rft.spage=711-718&rft.epage=711-718&rft.eissn=0278-0062&rft.issn=0278-0062&rft.au=DENIS%20DE%20SENNEVILLE,%20Baudouin&ROUJOL,%20S%C3%A9bastien&HEY,%20Silke&MOONEN,%20Chrit&RIES,%20Mario&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record