Afficher la notice abrégée

hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL]
dc.contributor.authorPICHARD, Teddy
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorDUBROCA, Bruno
dc.date.accessioned2024-04-04T03:09:01Z
dc.date.available2024-04-04T03:09:01Z
dc.date.issued2018
dc.identifier.issn1815-2406
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193576
dc.description.abstractEnNumerical schemes for the systems of transport equations are commonly constrained by a stability condition of Courant-Friedrichs-Lewy (CFL) type. We consider here a system modeling the steady transport of photons and electrons in the field of radiotherapy, which leads to very stiff CFL conditions at the discrete level. We circumvent this issue by constructing an implicit scheme based on a relaxation approach. The physics is modeled by an entropy-based moment system, namely the M 1 model. This model is non-linear, possesses potentially no hy-perbolic operator. It is furthermore only valid under a condition called realizability, which corresponds to the positivity of an underlying kinetic distribution function. The present numerical approach is applicable to non-linear systems which possess potentially no hyperbolic operator, and it preserves the realizability property. However the discrete equations are non-linear and we propose a numerical method to solve such non-linear systems. Our approach is tested on academic and practical cases in 1D, 2D and 3D and it is shown to require significantly less computational power than reference methods.
dc.language.isoen
dc.publisherGlobal Science Press
dc.subject.enImplicit scheme
dc.subject.enRelaxation scheme
dc.subject.enM1 model
dc.subject.enRadiotherapy dose computation
dc.title.enA numerical approach for a system of transport equations in the field of radiotherapy
dc.typeArticle de revue
dc.identifier.doi10.4208/cicp.OA-2017-0245
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalCommunications in Computational Physics
bordeaux.page1097-1126
bordeaux.volume25
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01582530
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01582530v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Computational%20Physics&rft.date=2018&rft.volume=25&rft.issue=4&rft.spage=1097-1126&rft.epage=1097-1126&rft.eissn=1815-2406&rft.issn=1815-2406&rft.au=PICHARD,%20Teddy&BRULL,%20St%C3%A9phane&DUBROCA,%20Bruno&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée