Show simple item record

dc.contributor.advisorJean-François Jaulent
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorVILLANUEVA GUTIÉRREZ, José Ibrahim
dc.contributor.otherChristian Maire [Président]
dc.contributor.otherCornelius Greither [Rapporteur]
dc.contributor.otherJean-Robert Belliard [Rapporteur]
dc.contributor.otherChazad Movahhedi
dc.contributor.otherFlorence Soriano-Gafiuk
dc.contributor.otherKarim Belabas
dc.contributor.otherYuri Bilu
dc.contributor.otherAntonio Lei
dc.date.accessioned2024-04-04T03:08:53Z
dc.date.available2024-04-04T03:08:53Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193565
dc.identifier.nnt2017BORD0637
dc.description.abstractCe travail de thèse comporte l'étude des invariants logarithmiques le long des ℤℓ^{d}-extensions et se compose de trois parties étroitement reliées. La première partie est un compendium sur les divers approches à l'arithmétique algorithmique, c'est à dire l'étude générale des invariants logarithmiques. En particulier on y présente quatre définitions équivalentes du groupe de classes logarithmiques et on y démontre leur équivalence. On donne aussi une preuve alternative d'un théorème d'Iwasawa de type logarithmique. La deuxième partie s'interprète comme un addendum historique sur l'étude du groupe de classes logarithmiques le long des ℤℓ-extensions. On démontre que sous la conjecture de Gross-Kuz'min la théorie d'Iwasawa peut être bien employée pour l'étude du cas non-cyclotomique. Ainsi, on démontre des relations entre les invariants µ et λ correspondant au ℓ-groupe de classes avec les invariants μ~ et λ~ attachés aux groupes de classes logarithmiques. La troisième partie comporte l'étude du module d'Iwasawa logarithmique pour des ℤℓ^{d}-extensions, c'est à dire du groupe de Galois X=Gal(Ld/Kd) de la ℓ-extension maximale abélienne logarithmiquement non-ramifiée du compositum Kd des différentes ℓ-extensions d'un corps de nombres K. On démontre sous la conjecture de Gross-Kuz'min, de façon analogue au cas classique, que X est bien un module noethérien et de torsion sous l'algèbre d'Iwasawa de Kd. Ainsi, on déduit des relations entre les invariants logarithmiques μ~ et λ~ des ℤℓ-extensions de K qui satisfont une hypothèse de décomposition.
dc.description.abstractEnThis work is concerned with the study of logarithmic invariants on ℤℓ^{d}-extensions and is subdivided in three pieces, which are closely related to each other. The first part is a compendium of the different approaches to logarithmic arithmetic, that is the study of the logarithmic invariants. In particular we show the equivalence between the four definitions of the logarithmic class group existing in the literature. Also we give an alternative proof of an Iwasawa logarithmic result. The second part can be thought as an historic addendum on the study of the logarithmic class group over ℤℓ-extensions. Assuming the Gross-Kuz'min conjecture we show that the logarithmic class group can be studied in the Iwasawa setting for non-cyclotomic extensions. We also give relations between the classical µ and λ invariants and the logarithmic invariants μ~ and λ~ attached to the logarithmic class groups. The third part studies the properties of the Iwasawa logarithmic module for ℤℓ^{d}-extensions, that is the Galois group X=Gal(Ld/Kd) of the maximal abelian ℤℓ-extension logarithmically unramified of the compositum Kd of the different ℤℓ-extensions of a number field K. Assuming the Gross-Kuz'min conjecture we show that X is a noetherian torsion module over the Iwasawa algebra of Kd. We also deduce relations between the logarithmic invariants μ~ and λ~ of the ℤℓ-extensions of K which satisfy a splitting condition.
dc.language.isofr
dc.subjectThéorie algébrique de nombres
dc.subjectArithmétique logarithmique
dc.subjectThéorie d’Iwasawa
dc.subjectThéorie l-adique du corps de classes
dc.subject.enAlgebraic number theory
dc.subject.enLogarithmic arithmetic
dc.subject.enIwasawa’s theory
dc.subject.enL- adic class field theory
dc.titleSur quelques questions en théorie d'Iwasawa
dc.title.enOn some questions in Iwasawa theory
dc.typeThèses de doctorat
dc.subject.halMathématiques [math]/Mathématiques générales [math.GM]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionUniversité de Bordeaux
bordeaux.ecole.doctoraleÉcole doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)
hal.identifiertel-01587820
hal.version1
dc.subject.esTeoría algebraica de números
dc.subject.esAritmética logarítmica
dc.subject.esTeoría de Iwasawa
dc.subject.esTeoría l-ádica de campos de clases
hal.origin.linkhttps://hal.archives-ouvertes.fr//tel-01587820v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Sur%20quelques%20questions%20en%20th%C3%A9orie%20d'Iwasawa&rft.atitle=Sur%20quelques%20questions%20en%20th%C3%A9orie%20d'Iwasawa&rft.au=VILLANUEVA%20GUTI%C3%89RREZ,%20Jos%C3%A9%20Ibrahim&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record