Afficher la notice abrégée

hal.structure.identifierDepartment of Statistics and Applied Probability [DSAP]
dc.contributor.authorCHAN, Hock
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorDEL MORAL, Pierre
hal.structure.identifierDepartment of Computing [London]
hal.structure.identifierDepartment of Statistics and Applied Probability [DSAP]
dc.contributor.authorJASRA, Ajay
dc.date.accessioned2024-04-04T03:08:42Z
dc.date.available2024-04-04T03:08:42Z
dc.date.issued2014-11-14
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193547
dc.description.abstractEnThis article provides a new theory for the analysis of forward and backward particle approximations of Feynman-Kac models. Such formulae are found in a wide variety of applications and their numerical (particle) approximation are required due to their intractability. Under mild assumptions, we provide sharp and non-asymptotic first order expansions of these particle methods, potentially on path space and for possibly unbounded functions. These expansions allows one to consider upper and lower bound bias type estimates for a given time horizon n and particle number N ; these non-asymptotic estimates are of order O(n/N). Our approach is extended to tensor products of particle density profiles, leading to new sharp and non-asymptotic propagation of chaos estimates. The resulting upper and lower bound propagation of chaos estimates seems to be the first result of this kind for mean field particle models. As a by-product of our results, we also provide some analysis of the particle Gibbs sampler, providing first order expansions of the kernel and minorization estimates.
dc.language.isoen
dc.subject.enFeynman-Kac Formulae
dc.subject.enParticle Simulation
dc.subject.enParticle Gibbs Samplers
dc.title.enA Sharp First Order Analysis of Feynman-Kac Particle Models
dc.typeRapport
dc.subject.halMathématiques [math]/Probabilités [math.PR]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionArxiv
bordeaux.type.reportrr
hal.identifierhal-01593884
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01593884v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2014-11-14&rft.au=CHAN,%20Hock&DEL%20MORAL,%20Pierre&JASRA,%20Ajay&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée