Mostrar el registro sencillo del ítem

hal.structure.identifierAmpère, Département Bioingénierie [BioIng]
dc.contributor.authorVOYER, Damien
hal.structure.identifierInstitute for Pulsed Power and Microwave Technology [Karlsruhe]
dc.contributor.authorSILVE, Aude
hal.structure.identifierVectorologie et thérapeutiques anti-cancéreuses [Villejuif] [UMR 8203]
dc.contributor.authorMIR, Lluis M.
hal.structure.identifierAmpère, Département Bioingénierie [BioIng]
dc.contributor.authorSCORRETTI, Riccardo
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.date.accessioned2024-04-04T03:08:37Z
dc.date.available2024-04-04T03:08:37Z
dc.date.issued2018-03
dc.identifier.issn1567-5394
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193543
dc.description.abstractEnIn this paper, we propose a new dynamical model of tissue electroporation. The model is based on equivalent circuit approach at the tissue. Considering two current densities from cells and extracellular matrix, we identify the macroscopic homogenised contribution of the cell membranes. Our approach makes it possible to define a macroscopic homogenised electric field and a macroscopic homogenised transmembrane potential. This provides a direct link between the cell scale electroporation models and the tissue models. Finite element method adapted to the new non-linear model of tissue electroporation is used to compare experiments with simulations. Adapting the phenomenological electroporation model of Leguèbe et al. to the tissue scale, we calibrate the tissue model with experimental data. This makes two steps appear in the tissue electroporation process, as for cells. The new insight of the model lies in the well-established equivalent circuit approach to provide a homogenised version of cell scale models. Our approach is tightly linked to numerical homogenisation strategies adapted to bioelectrical tissue modeling.
dc.description.sponsorshipPhysique, Radiobiologie, Imagerie Médicale et Simulation - ANR-11-LABX-0063
dc.language.isoen
dc.publisherElsevier
dc.subject.entheory of pores
dc.subject.enphenomenological modeling
dc.subject.enelectric field
dc.subject.enbiological tissue
dc.subject.enElectroporation
dc.title.enDynamical modeling of tissue electroporation
dc.typeArticle de revue
dc.identifier.doi10.1016/j.bioelechem.2017.08.007
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalBioelectrochemistry
bordeaux.page98 - 110
bordeaux.volume119
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01598846
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01598846v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Bioelectrochemistry&rft.date=2018-03&rft.volume=119&rft.spage=98%20-%20110&rft.epage=98%20-%20110&rft.eissn=1567-5394&rft.issn=1567-5394&rft.au=VOYER,%20Damien&SILVE,%20Aude&MIR,%20Lluis%20M.&SCORRETTI,%20Riccardo&POIGNARD,%20Clair&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem