Equations with powers of singular moduli
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
dc.contributor.author | RIFFAUT, Antonin | |
dc.date.accessioned | 2024-04-04T03:08:10Z | |
dc.date.available | 2024-04-04T03:08:10Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1793-0421 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193506 | |
dc.description.abstractEn | We treat two different equations involving powers of singular moduli. On the one hand, we show that, with two possible (explicitly specified) exceptions, two distinct singular moduli j(τ), j(τ ′) such that the numbers 1, j(τ) m and j(τ ′) n are linearly dependent over Q for some positive integers m, n, must be of degree at most 2. This partially generalizes a result of Allombert, Bilu and Pizarro-Madariaga, who studied CM-points belonging to straight lines in C 2 defined over Q. On the other hand, we show that, with " obvious " exceptions, the product of any two powers of singular moduli cannot be a non-zero rational number. This generalizes a result of Bilu, Luca and Pizarro-Madariaga, who studied CM-points belonging to an hyperbola xy = A, where A ∈ Q. | |
dc.language.iso | en | |
dc.publisher | World Scientific Publishing | |
dc.subject.en | Singular modulus | |
dc.subject.en | Conjecture of André–Oort | |
dc.subject.en | Complex multiplication | |
dc.title.en | Equations with powers of singular moduli | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1142/S1793042119500234 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
bordeaux.journal | International Journal of Number Theory | |
bordeaux.page | 445-468 | |
bordeaux.volume | 15 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01630363 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01630363v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Journal%20of%20Number%20Theory&rft.date=2019&rft.volume=15&rft.issue=3&rft.spage=445-468&rft.epage=445-468&rft.eissn=1793-0421&rft.issn=1793-0421&rft.au=RIFFAUT,%20Antonin&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |