Show simple item record

hal.structure.identifierKing‘s College London
dc.contributor.authorCORRADO, Cesare
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorZEMZEMI, Nejib
dc.date.accessioned2024-04-04T03:07:53Z
dc.date.available2024-04-04T03:07:53Z
dc.date.issued2018-01-01
dc.identifier.issn1361-8415
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193483
dc.description.abstractEnComputational models of heart electrophysiology achieved a considerable interest in the medical community as they represent a novel framework for the study of the mechanisms underpinning heart pathologies. The high demand of computational resources and the long computational time required to evaluate the model solution hamper the use of detailed computational models in clinical applications. In this paper, we present a multi-front eikonal algorithm that adapts the conduction velocity (CV) to the activation frequency of the tissue substrate. We then couple the eikonal new algorithm with the Mitchell-Schaeffer (MS) ionic model to determine the tissue electrical state. Compared to the standard eikonal model, this model introduces three novelties: first, it evaluates the local value of the transmembrane potential and of the ionic variable solving an ionic model; second, it computes the action potential duration (APD) and the diastolic interval (DI) from the solution of the MS model and uses them to determine if the tissue is locally re-excitable; third, it adapts the CV to the underpinning electrophysiological state through an analytical expression of the CV restitution and the computed local DI. We conduct series of simulations on a 3D tissue slab and on a realistic heart geometry and compare the solutions with those obtained solving the monodomain equation. Our results show that the new model is significantly more accurate than the standard eikonal model. The proposed model enables the numerical simulation of the heart electrophys-iology on a clinical time scale and thus constitutes a viable model candidate for computer-guided radio-frequency ablation.
dc.description.sponsorshipAgency for mathematics in interaction with enterprise and society - ANR-10-LABX-0002
dc.language.isoen
dc.publisherElsevier
dc.subject.enAlgorithm
dc.subject.enConduction
dc.subject.enCardiac Electrophysiology
dc.subject.enMulti-front eikonal model
dc.subject.enDijkstra
dc.subject.enClinical time scale
dc.subject.enVelocity
dc.subject.enMitchell And Schaeffer model
dc.title.enA conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation
dc.typeArticle de revue
dc.identifier.doi10.1016/j.media.2017.11.002
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.journalMedical Image Analysis
bordeaux.page186-197
bordeaux.volume43
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01655410
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01655410v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Medical%20Image%20Analysis&rft.date=2018-01-01&rft.volume=43&rft.spage=186-197&rft.epage=186-197&rft.eissn=1361-8415&rft.issn=1361-8415&rft.au=CORRADO,%20Cesare&ZEMZEMI,%20Nejib&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record