Quantum Information Set Decoding Algorithms
hal.structure.identifier | Security, Cryptology and Transmissions [SECRET] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KACHIGAR, Ghazal | |
hal.structure.identifier | Security, Cryptology and Transmissions [SECRET] | |
dc.contributor.author | TILLICH, Jean-Pierre | |
dc.contributor.editor | Tanja Lange | |
dc.contributor.editor | Tsuyoshi Takagi | |
dc.date.accessioned | 2024-04-04T03:07:42Z | |
dc.date.available | 2024-04-04T03:07:42Z | |
dc.date.conference | 2017-06-26 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193466 | |
dc.description.abstractEn | The security of code-based cryptosystems such as the Mc\-Eliece cryptosystem relies primarily on the difficulty of decoding random linear codes. The best decoding algorithms are all improvements of an old algorithm due to Prange: they are known under the name of information set decoding techniques.It is also important to assess the security of such cryptosystems against a quantum computer. This research thread started in \cite{OS09} and thebest algorithm to date has been Bernstein's quantising \cite{B10} of the simplest information set decoding algorithm, namely Prange's algorithm.It consists in applying Grover's quantum search to obtain a quadratic speed-up of Prange's algorithm.In this paper, we quantise other information set decoding algorithms by using quantum walk techniques which were devised for the subset-sum problem in \cite{BJLM13}.This results in improving the worst-case complexity of $2^{0.06035n}$ of Bernstein's algorithm to$2^{0.05869n}$ with the best algorithm presented here (where $n$ is the codelength). | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.subject.en | code based cryptography | |
dc.subject.en | decoding algorithms | |
dc.subject.en | quantum algorithms | |
dc.title.en | Quantum Information Set Decoding Algorithms | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.1007/978-3-319-59879-6_5 | |
dc.subject.hal | Informatique [cs]/Théorie de l'information [cs.IT] | |
dc.subject.hal | Informatique [cs]/Cryptographie et sécurité [cs.CR] | |
dc.description.sponsorshipEurope | Post-quantum cryptography for long-term security | |
bordeaux.page | 69-89 | |
bordeaux.volume | 10346 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | PQCrypto 2017 - The Eighth International Conference on Post-Quantum Cryptography | |
bordeaux.country | NL | |
bordeaux.conference.city | Utrecht | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01661905 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2017-06-28 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01661905v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.volume=10346&rft.spage=69-89&rft.epage=69-89&rft.au=KACHIGAR,%20Ghazal&TILLICH,%20Jean-Pierre&rft.genre=unknown |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |