Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHARTMANN, Andreas
dc.contributor.authorSEIP, Kristian
dc.contributor.authorSARASON, Donald
dc.date.accessioned2024-04-04T03:06:31Z
dc.date.available2024-04-04T03:06:31Z
dc.date.created2003
dc.date.issued2004
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193342
dc.description.abstractEnThe authors establish a criterion for the surjectivity of noninjective bounded Toeplitz operators on $H^2\coloneq H^2(T)$ and show that the canonical right inverse of a surjective Toeplitz operator is the product of three Toeplitz operators. The details are as follows. Assume $\varphi$ is unimodular and the Toeplitz operator $T_\varphi$ is not injective. Then ${\rm Ker}\,T_\varphi = H^2 \ominus IH^2$ with some inner function $I$ and there is a unique function $g\in{\rm Ker}\,T_\varphi$ of unit norm for which ${\rm Re}\,g(0)$ is maximal. One has $g=a/(1-b)$ with certain $a$ and $b$ in the unit ball of $H^\infty$, and $b=Ib_0$. Put $g_0=a/(1-b_0)$. The main result of the paper says that $T_\varphi$ is surjective if and only if $|g_0|^2$ is a Helson-Szegö weight and that in this case the right inverse of $T_\varphi$ whose range is orthogonal to ${\rm Ker}\,T_\varphi$ equals $T_gT_{I-\overline{b_0}}\,T_{1/\overline{a}}$. The proofs involve de Branges-Rovnyak spaces and results by E. Hayashi, D. Hitt, and T. Nakazi. The authors' characterization of surjectivity is of great depth but, in the authors' words, "it is unclear how useful it might be in analyzing specific Toeplitz operators or classes of Toeplitz operators. This matter awaits further investigation."
dc.language.isoen
dc.subject.enToeplitz operators
dc.subject.enDevinatz–Widom theorem
dc.subject.ende Branges–Rovnyak spaces
dc.subject.enreproducing kernels
dc.subject.enHelson–Szeg˝o weight
dc.subject.enextremal function
dc.title.enSurjective Toeplitz operators.
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Variables complexes [math.CV]
bordeaux.journalActa Sci. Math. (Szeged)
bordeaux.page609-621
bordeaux.volume70
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3-4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00174697
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00174697v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Sci.%20Math.%20(Szeged)&rft.date=2004&rft.volume=70&rft.issue=3-4&rft.spage=609-621&rft.epage=609-621&rft.au=HARTMANN,%20Andreas&SEIP,%20Kristian&SARASON,%20Donald&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record