Non-autonomous maximal regularity in weighted space
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ACHACHE, Mahdi | |
dc.contributor.author | HOSSNI, Tebbani | |
dc.date.accessioned | 2024-04-04T03:05:39Z | |
dc.date.available | 2024-04-04T03:05:39Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/193266 | |
dc.description.abstractEn | We consider the problem of maximal regularity for non-autonomous Cauchy problems u ′ (t) + A(t)u(t) = f (t) (t ∈ [0, τ ]), u(0) = u 0. The time dependent operators A(t) are associated with sesquilinear forms on a Hilbert space H. We prove the maximal regularity in the weighted space L 2 (0, τ, t β dt; H), with β ∈] − 1, 1[ and we prove also other regularity properties for the solution of the previous problem. Our result is motivated by boundary value problems. | |
dc.language.iso | en | |
dc.subject.en | Maximal regularity | |
dc.subject.en | non-autonomous evolution equations | |
dc.subject.en | weighted space | |
dc.title.en | Non-autonomous maximal regularity in weighted space | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01822281 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01822281v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ACHACHE,%20Mahdi&HOSSNI,%20Tebbani&rft.genre=preprint |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |