Show simple item record

hal.structure.identifierUniversité de Bordeaux [UB]
dc.contributor.authorDESSEIN, Arnaud
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAPADAKIS, Nicolas
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorROUAS, Jean-Luc
dc.date.accessioned2024-04-04T03:05:28Z
dc.date.available2024-04-04T03:05:28Z
dc.date.issued2018
dc.identifier.issn1532-4435
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193249
dc.description.abstractEnThis paper presents a unified framework for smooth convex regularization of discrete optimal transport problems. In this context, the regularized optimal transport turns out to be equivalent to a matrix nearness problem with respect to Bregman divergences. Our framework thus naturally generalizes a previously proposed regularization based on the Boltzmann-Shannon entropy related to the Kullback-Leibler divergence, and solved with the Sinkhorn-Knopp algorithm. We call the regularized optimal transport distance the rot mover's distance in reference to the classical earth mover's distance. By exploiting alternate Bregman projections, we develop the alternate scaling algorithm and non-negative alternate scaling algorithm, to compute efficiently the regularized optimal plans depending on whether the domain of the regularizer lies within the non-negative orthant or not. We further enhance the separable case with a sparse extension to deal with high data dimensions. We also instantiate our framework and discuss the inherent specificities for well-known regularizers and statistical divergences in the machine learning and information geometry communities. Finally, we demonstrate the merits of our methods with experiments using synthetic data to illustrate the effect of different regularizers, penalties and dimensions, as well as real-world data for a pattern recognition application to audio scene classification.
dc.description.sponsorshipGeneralized Optimal Transport Models for Image processing - ANR-16-CE33-0010
dc.language.isoen
dc.publisherMicrotome Publishing
dc.title.enRegularized Optimal Transport and the ROT Mover's Distance
dc.typeArticle de revue
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Théorie de l'information [cs.IT]
dc.subject.halInformatique [cs]/Apprentissage [cs.LG]
dc.identifier.arxiv1610.06447
bordeaux.journalJournal of Machine Learning Research
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01540866
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01540866v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Machine%20Learning%20Research&rft.date=2018&rft.eissn=1532-4435&rft.issn=1532-4435&rft.au=DESSEIN,%20Arnaud&PAPADAKIS,%20Nicolas&ROUAS,%20Jean-Luc&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record