The system will be going down for regular maintenance. Please save your work and logout.

Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierMathematics Research Unit
dc.contributor.authorTHALMAIER, Anton
hal.structure.identifierTianjin University [TJU]
dc.contributor.authorWANG, Feng-Yu
dc.date.accessioned2024-04-04T03:05:21Z
dc.date.available2024-04-04T03:05:21Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193238
dc.description.abstractEnBy methods of stochastic analysis on Riemannian manifolds, we derive explicit constants $c_1(D)$ and $c_2(D)$ for a $d$-dimensional compact Riemannian manifold $D$ with boundary such that $c_1(D)\sqrt{\lambda}\|\phi\|_\infty \le \|\nabla \phi\|_\infty\le c_2(D)\sqrt{\lambda} \|\phi\|_\infty$ holds for any Dirichlet eigenfunction $\phi$ of $-\Delta$ with eigenvalue $\lambda$. In particular, when $D$ is convex with nonnegative Ricci curvature, this estimate holds for $c_1(D)=\frac{1}{de}$ and $c_2(D)=\sqrt{e}\left(\frac{\sqrt{2}}{\sqrt{\pi}}+\frac{\sqrt{\pi}}{4\sqrt{2}}\right)$. Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper.
dc.language.isoen
dc.subject.enAMS subject Classification: 35P20
dc.subject.en58J65
dc.subject.en60H30
dc.subject.enKeywords: Eigenfunction
dc.subject.engradient estimate
dc.subject.endiffusion process
dc.subject.encurvature
dc.subject.ensecond fundamental form
dc.subject.ensecond fundamental
dc.subject.enform
dc.titleEstimées de gradients de fonctions propres de Dirichlet
dc.title.enGradient Estimates on Dirichlet Eigenfunctions
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1710.10832
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-01625890
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01625890v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Estim%C3%A9es%20de%20gradients%20de%20fonctions%20propres%20de%20Dirichlet&rft.atitle=Estim%C3%A9es%20de%20gradients%20de%20fonctions%20propres%20de%20Dirichlet&rft.au=ARNAUDON,%20Marc&THALMAIER,%20Anton&WANG,%20Feng-Yu&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record