Show simple item record

hal.structure.identifierOptimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
dc.contributor.authorKAYAASLAN, Enver
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
dc.contributor.authorLAMBERT, Thomas
hal.structure.identifierOptimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
dc.contributor.authorMARCHAL, Loris
hal.structure.identifierOptimisation des ressources : modèles, algorithmes et ordonnancement [ROMA]
dc.contributor.authorUÇAR, Bora
dc.date.accessioned2024-04-04T03:04:56Z
dc.date.available2024-04-04T03:04:56Z
dc.date.issued2018-01
dc.identifier.issn1879-2294
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/193200
dc.description.abstractEnWe consider a variant of the well-known, NP-complete problem of minimum cut linear arrangement for directed acyclic graphs. In this variant, we are given a directed acyclic graph and we are asked to find a topological ordering such that the maximum number of cut edges at any point in this ordering is minimum. In our variant, the vertices and edges have weights, and the aim is to minimize the maximum weight of cut edges in addition to the weight of the last vertex before the cut. There is a known, polynomial time algorithm [Liu, SIAM J. Algebra. Discr., 1987] for the cases where the input graph is a rooted tree. We focus on the instances where the input graph is a directed series-parallel graph, and propose a polynomial time algorithm, thus expanding the class of graphs for which a polynomial time algorithm is known. Directed acyclic graphs are used to model scientific applications where the vertices correspond to the tasks of a given application and the edges represent the dependencies between the tasks. In such models, the problem we address reads as minimizing the peak memory requirement in an execution of the application. Our work, combined with Liu's work on rooted trees addresses this practical problem in two important classes of applications.
dc.description.sponsorshipSolveurs pour architectures hétérogènes utilisant des supports d'exécution - ANR-13-MONU-0007
dc.language.isoen
dc.publisherElsevier
dc.subject.enPeak memory minimization
dc.subject.enSeries-parallel graphs
dc.subject.enScheduling
dc.title.enScheduling series-parallel task graphs to minimize peak memory
dc.typeArticle de revue
dc.identifier.doi10.1016/j.tcs.2017.09.037
dc.subject.halInformatique [cs]/Calcul parallèle, distribué et partagé [cs.DC]
bordeaux.journalTheoretical Computer Science
bordeaux.page1-23
bordeaux.volume707
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01891937
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01891937v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Theoretical%20Computer%20Science&rft.date=2018-01&rft.volume=707&rft.spage=1-23&rft.epage=1-23&rft.eissn=1879-2294&rft.issn=1879-2294&rft.au=KAYAASLAN,%20Enver&LAMBERT,%20Thomas&MARCHAL,%20Loris&U%C3%87AR,%20Bora&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record